Responsive image
博碩士論文 etd-0715112-165222 詳細資訊
Title page for etd-0715112-165222
論文名稱
Title
不同離岸風場集電架構之低電壓忍受能力分析
Analysis of Low Voltage Ride Through Capability of Different Off-shore Wind Farm Collection Schemes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-07
繳交日期
Date of Submission
2012-07-15
關鍵字
Keywords
離岸式風力發電場、雙饋式感應發電機、低電壓忍受能力
Low Voltage Ride-Through (LVRT) capability, Offshore wind power plant, Doubly-Fed Induction Generator
統計
Statistics
本論文已被瀏覽 5692 次,被下載 4339
The thesis/dissertation has been browsed 5692 times, has been downloaded 4339 times.
中文摘要
離岸式風力發電場的建置需求越來越高,因離岸式風力發電場與岸上式的風力發電場相比,有著較優的容量因數與較高的發電效率。但風力發電場之功率損失、經濟問題、保護系統與可靠度上有許多的問題與挑戰需要去克服。風力發電場集電架構的設計與風力發電場的發電效率及對事故的忍受能力有著重要的關係,低電壓忍受能力(Low Voltage Ride-Through capability, LVRT)。是指當系統發生低電壓的事故時,風力發電機組必須在不與系統解聯下忍受並穿越其低電壓的情況達一定時間,電網運轉規則對LVRT的規範往往與併接地點有關,嚴格的LVRT要求將影響離岸風場的整理投資成本。
在大部分離岸風力發電場上,將風力發電機組安排成輻射狀的集電架構,此架構在經濟考量上是好的,但較缺乏供電的可靠性。在相鄰兩傳輸饋線末端處,新增連接線將其兩饋線連接成迴路的建議,可以改善集電架構的可靠度。為了將風力發電場所發出的功率傳送至岸上電力系統,在集中匯流排至岸上責任分界點(PCC點)間,採用中壓等級的交流輸電線是最簡單的方法之一。本研究是透過DIgSILENT套裝軟體進行離岸風場在系統事故下的動態模擬之研究。研究成果顯示不同集電架構下之風場,對低電壓忍受能力較個別風力機組的低電壓忍受能力高,即風力發電場與個別風力發電機組低電壓忍受能力曲線上會有所不同,此模擬結果可被利用來降低風力發電場滿足LVRT規範所需的建置成本。
Abstract
Demand is emerging for offshore wind power plant (WPP) that often has favorable capacity factor and high capacity value as compared with onshore wind farms. There are many challenges regarding power losses, economics, protection system and reliability of the wind farm. Collection system design decisions play an essential role to efficient operation of the WPP. Wind generators also have to be able to cope with grid disturbances. Low voltage ride-through (LVRT) capability of wind turbines requires generator units remain in operation for severe voltage drops during  grid system faults, and be able to withstand depressed voltage for a few seconds in a recovery period. Technical requirements set out in grid codes for off shore wind farm normally relate to different connection points. A rigor LVRT requirement would increase the overall investment costs of the wind farm.

In most offshore wind farm projects, radial collector systems connecting a number of wind turbines and terminated at the offshore platform have served well the requirements for an economical design. However, due to the lack of redundancy, its reliability is poor. To improve the reliability of the collector system, the inclusion of a cable section that interconnects the remote ends of two adjacent radial feeders has been proposed. The transmission system of a wind farm takes the power generated and sends it to shore. Medium voltage AC transmission is the simplest one, just gathering the cables from the collector system and taking them together until they reach the point of common coupling (PCC).Through wind farm dynamic simulations by using DIgSIENT package, this thesis demonstrates that the ride through capability which occur at the particular wind parks with different collector system topology are greater than those which the wind turbines are capable of riding through, i.e., LVRT curves of different wind farm collection system designs of an offshore WPP and a single wind generator are different. This can be exploited to reduce the cost in complying with LVRT requirement of offshore WPP.
目次 Table of Contents
論文審定書 i
中文摘要 ii
英文摘要 iii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 風力發電之發展現況 2
1.3 風力發電機之種類 10
1.4 低電壓忍受能力介紹 22
1.5 論文貢獻 29
1.6 論文架構 30
第二章 大型雙饋式風力發電場之數學模型建立 31
2.1 雙饋式感應發電機組運轉原理與動態模型 31
2.2 風力渦輪機原理與動態模型 47
2.3 轉換器原理、動態模型與控制策略 56
2.4 輸電線及變壓器模型 62
2.5 離岸風場集電架構 70
第三章 不同風場集電架構之低電壓忍受能力研究 73
3.1 模擬案例建立與說明 73
3.2 模擬架構與執行方法 73
3.3 功率潮流分析 84
3.4 暫態響應分析 85
第四章 模擬結果分析 96
4.1 負載潮流分析 96
4.2 暫態響應分析 100
4.3 離岸風場低電壓忍受能力分析 118
4.4 分析結果討論 132
第五章 結論與未來展望 134
5.1 結論 134
5.2 未來研究方向 135
參考文獻 137
參考文獻 References
[1] World Wind Energy Association, WWEA : Http://http://www.wwindea.org.
[2] Global Wind Energy Council, GWEC : Http://www.gwec.net/.
[3] World Wind Energy Report 2010,World Wind Energy Association WWEA, April 2011.
[4] Global Wind Report 2010, Global Wind Energy Council, April 2011.
[5] 2010年能源產業技術白皮書, 經濟部能源局, 民國99年四月 : http://www.moeaboe.gov.tw。
[6] M. Behnke, A. Ellis, Y. Kazachkov, T. McCoy, E. Muljadi, W. Price and J. Sanchez-Gasca, Development and Validation of WECC Variable Speed Wind Turbine Dynamic Models for Grid Integration Studies, AWEA’s 2007 WindPower Conference, Los Angeles, California, June 4–7, 2007.
[7] 林筱秋,雙饋式感應發電機之低電壓忍受能力改善方法研究,國立中山大學,碩士論文,民國99年7月。
[8] 王順忠,陳秋麟,電機機械基本原理,臺灣東華書局股份有限公司,民國93年10月。
[9] 台灣電力股份有限公司再生能源發電系統併聯技術要點,台灣電力公司,民國98年12月。
[10] M. Tsili and S. Papathanassiou, “A review of grid code technical requirements for wind farms”, IET Renewable Power Generation, 3 Issue:3, 308 – 332, Sept. 2009.
[11] M. Valentini, “Fault Current Contribution from VSC-based Wind Turbine to the Grid”, Aalborg Universitet, PED10 – 1015C, 4. June 2008.
[12] Grid Code–High and Extra High Voltage, E.ON Netz GmbH, Bayreuth, Germany, April 2006.
[13] The Grid Code, issue 3, rev. 24, National Grid Electricity Transmission plc, UK, October 2008.
[14] Grid connection of wind turbines to networks with voltages below 100 kV, Regulation TF 3.2.6, Energinet, Denmark, May 2004.
[15] Grid connection of wind turbines to networks with voltages above 100 kV, Regulation TF 3.2.5, Energinet, Denmark, December 2004.
[16] G. Joos, Review of grid codes, Proc. 1st Int. Conf. Integration of RE and DER, Brussels, Belgium, 2004.
[17] CanWEA-Canadian grid code for wind development review and recommendations, Document No. 11163/OR/ 01 B, Garrad Hassan Canada Inc., 2005.
[18] Petitions for Rulemaking or, in the alternative, request for clarification of order 2003-A, and Request for Technical Conference of the American Wind Energy Association, American Wind Energy Association, USA, May 2005.
[19] 朱翊誌,含風力發電微電網之孤島運轉策略,國立中山大學,碩士論文,民國96年6月。
[20] 洪嘉駿,雙饋式感應發電機機轉子側電力轉換器控制技術開發與實現,國立清華大學,碩士論文,民國96年7月。
[21] 林員正,雙饋式感應風力發電機組故障不間斷運轉控制策略之研究,國立清華大學,碩士論文,民國98年7月。
[22] Wind Turbine Models for Power System Stability Studies, Chalmers University of Technology, Sweden, 2006.
[23] T. Burton, D. Sharpe, N. Jendkins, and E. Bossanyi, Wind Energy Handbook, John Wiley & Sons Ltd., December 2001.
[24] 黃思倫,風力發電場的串流限流電抗器之研究,國立逢甲大學,民國97年7月。
[25] A. D. Hansen, F. lov, P. Sorensen, N. Cutululis, C. Jauch, and F. Blaabjerg, “Dynamic wind turbine models in power system simulation tool,” DIgSILENT, Riso-R-1400(ed.2), Technical University of Denmark, August 2007.
[26] Dynamic Modelling of Doubly-Fed Induction Machine Wind-Generators, Published by DIgSILENT GmbH, Germany, 14. Augest, 2003.
[27] R. Smaili, L. Xu, and D.K. Nichols, A new control method of permanent magnet generator for maximum power tracking in wind turbine application, Proceedings of IEEE Power Engineering Society General Meeting, 2005.
[28] L. Holdsworth, X.G. Wu, J.B. Ekanayake and N. Jenkins, Comparison of fixed speed and doubly-fed induction wind turbines during power system disturbances, Generation, Transmission and Distribution, IEE Proceedings , Volume:150, Issue:3, Page(s):343-352, 2003.
[29] Overhead line modeling, DIgSILENT GmbH, Document No, build 511, 5. May, 2009.
[30] 陳在相,吳瑞南,張宏展,電力系統分析,臺灣東華書局股份有限公司,民國97年6月。
[31] G. Quinonez-Varela, G.W. Ault, O. Anaya-Lara and J.R. McDonald, “Electrical collector system options for large offshore wind farms,” IET Renewable Power Generation, 1, (2), pp. 107 –114, 8. February 2, 2007.
[32] M. Altin, R. Teodorescu, B. Bak-Jensen, P. Rodriguez and P. C. Kjar, “Aspects of Wind Power Plant Collector Network Layout and Control Architecture,” Proceedings of the Danish Phd Seminar on Detailed Modeling and Validation of Electrical Components and Systems 2010, p. 46-52 8. February, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code