Responsive image
博碩士論文 etd-0715113-033817 詳細資訊
Title page for etd-0715113-033817
論文名稱
Title
以多紡口製備有序大面積滾筒式近場靜電PVDF壓電纖維
The orderly and large area near-field electrospun PVDF fibers via multi-spinnerets and cylindrical glass tube
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-29
繳交日期
Date of Submission
2013-08-15
關鍵字
Keywords
多紡口、能量擷取、近場靜電紡絲、聚偏氟乙烯、壓電纖維
Energy harvest, Polyvinylidene fluoride (PVDF), Multi-spinnerets, Near-field electrospinning, Piezoelectric fibers
統計
Statistics
本論文已被瀏覽 5751 次,被下載 0
The thesis/dissertation has been browsed 5751 times, has been downloaded 0 times.
中文摘要
本論文研究多紡口滾筒式近場靜電聚偏氟乙烯(Polyvinylidene fluoride, PVDF)壓電纖維製程,以近場靜電紡絲技術(Near-field electrospinning)為基礎,嶄新設計多紡口(Multi-spinnerets)結構與中空滾筒收集纖維方式,達成快速收集多根有序大面積且具有良好壓電特性的聚偏氟乙烯壓電纖維。本研究以印刷電路板(Printed circuit board, PCB)與錫球上精密鑽孔製作多紡口結構,研究不同的多紡口結構設計對電紡PVDF壓電纖維的影響;並且使用田口品質工程法,針對環境電場、滾筒收集之切線速度、熱處理溫度、持溫時間之製程參數,計算以上參數對PVDF壓電纖維電壓輸出的貢獻度。將PVDF纖維由滾筒取下後,利用X光繞射分析儀(X-ray diffraction , XRD)、與掃描式電子顯微鏡 (Scanning electron microscope, SEM),分析PVDF壓電纖維的β相壓電特性及微觀表面型態,最後使用田口品質分析最優化的PVDF壓電纖維,進行拍擊電壓能量擷取測試以及蟬翼仿生訊號量測。經多紡口滾筒式近場靜電PVDF壓電纖維製程研究結果得知,PVDF溶液於18% wt時,擁有最佳電導率為44.2 µS/cm。利用田口品質工程法演算,得到PVDF壓電纖維的電壓輸出隨環境電場提升至1.6x107 V/m、滾筒收集轉速達 1700 rpm(切線速度為1779.9 mm/s)、熱處理溫度65度、持溫時間一小時為最佳參數。PVDF壓電纖維進行拍擊電壓測試中,在9Hz的拍擊頻率可得到最大輸出電壓86.9 mV。蟬翼電壓量測實驗中,於10 Hz的振盪頻率下,可感測到最大輸出電壓為6.2 mV。
Abstract
In this study, we improved the near-field electrospinning by multi-spinnerets with a hollow cylindrical collector to fabricate mass and big area permanent piezoelectricity of PVDF (Polyvinylidene fluoride) fibers array. We innovatively designed multi-spinnerets by PCB (Printed circuit board) and drilled spinnerets on the solder balls. With different process parameters, we could obtain different PVDF fiber diameters. By Taguchi method analysis, we found the optimum sample of PVDF fibers array were manufactured by electric field of 1.6 x 107 V /m, the fibers collector tangential velocity of 1779.9 mm/s, and the heat treatment temperature of 65 degrees at one hour. In addition, we used X-ray diffraction (XRD) and Scanning electron microscopy (SEM) to analyze β-phase crystal quality and the surface characterization of PVDF fibers, respectively. From the observation of XRD (X-ray diffraction), XRD result revealed a high diffraction peak at 2θ=20.6° of piezoelectric crystal β-phase structure. As PVDF solution (concentration of 18% wt and the conductivity of 44.2 μS/cm )was spun through near-field electrospinning by multi-spinnerets, we obtained a smooth manufacturing process. As a result of this study, we applied regularly stretching and releasing at 9 Hz vibration, and a maximum peak voltage of 86.9 mV was generated. In cicada wing test, vibration input during 10 ~ 50 Hz , and we obtained the maximum output voltage signals of 6.2 mV. These good piezoelectric PVDF fibers with high flexibility at low cost, electrical energy conversion, availability in generating energy from low-frequency vibration of environment, and various thicknesses and shapes can be applied at energy harvesting, sensor and actuation.
目次 Table of Contents
第一章 諸論 1
1.1 前言 1
1.2 研究背景與動機 1
1.3 研究目的 2
1.4 本文架構 3
第二章 文獻回顧與理論基礎 4
2.1 壓電效應 4
2.2 壓電效應與應力應變間的關係 8
2.3 壓電材料的分類 9
2.4 PVDF壓電材料的優點及特性 10
2.5 靜電紡絲製程技術 13
2.5.1 傳統靜電紡絲 13
2.5.2 近場靜電紡絲 15
2.5.3 無針式多根靜電紡絲 18
2.5.4 影響靜電紡絲的重要參數 21
2.6 PVDF壓電纖維絲的應用與量測 23
2.7 感測器的種類與原理 24
2.8 田口品質工程原理 25
2.8.1 田口法之簡介 25
2.8.2 損失函數 27
2.8.3 直交表 29
2.8.4 訊號雜訊比 31
2.8.5 損失函數與信號雜訊比(S/N)關係 31
第三章 實驗方法與步驟 33
3.1 多紡口結構滾筒式近場靜電紡絲設備介紹 33
3.2 多紡口結構與製程 35
3.3 玻璃滾筒收集裝置介紹 39
3.4 PVDF溶液製備流程 44
3.4.1 PVDF材料準備 44
3.4.2 調配PVDF溶液詳細流程 46
3.5 電場 49
3.6 玻璃滾筒收集轉速 50
3.7 掃描式電子顯微鏡 51
3.8 X光射線繞射儀 53
3.9 量測儀器 54
第四章 實驗結果與討論 55
4.1 多紡口近場電紡PVDF壓電纖維製程 55
4.2 PVDF纖維薄膜 57
4.3 PVDF溶液濃度電導率量測 59
4.4 多紡口設計錫球大小對近場電紡絲的影響 62
4.5 孔距對PVDF線徑的影響 65
4.6 多紡口孔數對PVDF影響的影響 67
4.7 電場對線徑的影響 68
4.8 滾筒轉速對線徑的影響 72
4.9 多紡口近場電紡絲之田口法分析 74
4.10 田口法分析九組PVDF壓電纖維電壓量測 78
4.11 田口品質工程之製程參數貢獻度 82
4.12 熱處理溫度對纖維的影響 84
4.13 PVDF纖維不同拍擊頻率電壓量測 86
4.14 壓電極性測試 92
4.15 感測元件之力量量測校正 94
4.16 力量對電壓輸出關係 96
4.17 蟬翼之仿生電壓訊號量測實驗 97
第五章 結論與未來展望 101
5.1 結論 101
5.2 未來展望 102
參考文獻 103
參考文獻 References
[1] Z. L. Wang, “Energy harvesting for self-powered nanosystems,” Nano Research, vol. 1, pp. 1-8, 2008.
[2] S. Theron, A. Yarin, E. Zussman, and E. Kroll, “Multiple jets in electrospinning: experiment and modeling,” Polymer, vol. 46, pp. 2889-2899, 2005.
[3] A. Ballato, “Piezoelectricity: history and new thrusts,” in Ultrasonics Symposium, 1996. Proceedings., 1996 IEEE, 1996, pp. 575-583.
[4] http://www.ceramtec.cn/, 2013.
[5] 吳朗, “電子陶瓷:壓電陶瓷,” 全欣資訊圖書股份有限公司, 1994年12月.
[6] R. Gregorio, “Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions,” Journal of applied polymer science, vol. 100, pp. 3272-3279, 2006.
[7] N. W. Hagood and A. von Flotow, “Damping of structural vibrations with piezoelectric materials and passive electrical networks,” Journal of Sound and Vibration, vol. 146, pp. 243-268, 1991.
[8] H. Tzou and C. Tseng, “Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach,” Journal of Sound and Vibration, vol. 138, pp. 17-34, 1990.
[9] Z. Li and P. M. Bainum, “Vibration control of flexible spacecraft integrating a momentum exchange controller and a distributed piezoelectric actuator,” Journal of Sound and Vibration, vol. 177, pp. 539-553, 1994.
[10] D. Spearritt and S. Asokanthan, “Torsional vibration control of a flexible beam using laminated PVDF actuators,” Journal of Sound and Vibration, vol. 193, pp. 941-956, 1996.
[11] X. Chen, S. Xu, N. Yao, and Y. Shi, “1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers,” Nano letters, vol. 10, pp. 2133-2137, 2010.
[12] J. Pu, X. Yan, Y. Jiang, C. Chang, and L. Lin, “Piezoelectric actuation of direct-write electrospun fibers,” Sensors and Actuators A: Physical, vol. 164, pp. 131-136, 2010.
[13] F. Li, W. Liu, C. Stefanini, X. Fu, and P. Dario, “A novel bioinspired PVDF micro/nano hair receptor for a robot sensing system,” Sensors, vol. 10, pp. 994-1011, 2010.
[14] H. Kawai, “The piezoelectricity of poly (vinylidene fluoride),” Japanese Journal of Applied Physics, vol. 8, pp. 975-976, 1969.
[15] N. J. Jo, H. O. Lim, and J. Ha, “Actuation Behavior of CP Actuator based on Polypyrrole and PVDF,” Advanced Materials Research, vol. 29, pp. 363-366, 2007.
[16] T. Wang, J. M. Herbert, and A. M. Glass, “The applications of ferroelectric polymers,” Blackie and Son, Bishopbriggs, Glasgow G 64 2 NZ, UK, 1988., 1988.
[17] I. Elashmawi, E. Abdelrazek, H. Ragab, and N. Hakeem, “Structural, optical and dielectric behavior of PVDF films filled with different concentrations of iodine,” Physica B: Condensed Matter, vol. 405, pp. 94-98, 2010.
[18] M. Neidhöfer, F. Beaume, L. Ibos, A. Bernès, and C. Lacabanne, “Structural evolution of PVDF during storage or annealing,” Polymer, vol. 45, pp. 1679-1688, 2004.
[19] Y. Peng and P. Wu, “A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process,” Polymer, vol. 45, pp. 5295-5299, 2004.
[20] P. Sajkiewicz, A. Wasiak, and Z. Gocłowski, “Phase transitions during stretching of poly (vinylidene fluoride),” European polymer journal, vol. 35, pp. 423-429, 1999.
[21] Y. Chen and C.-Y. Shew, “Conformational behavior of polar polymer models under electric fields,” Chemical physics letters, vol. 378, pp. 142-147, 2003.
[22] R. Whatmore, “Pyroelectric devices and materials,” Reports on progress in physics, vol. 49, p. 1335, 1986.
[23] K. Tashiro, M. Kobayashi, H. Tadokoro, and E. Fukada, “Calculation of elastic and piezoelectric constants of polymer crystals by a point charge model: application to poly (vinylidene fluoride) form I,” Macromolecules, vol. 13, pp. 691-698, 1980.
[24] J. Chang, M. Dommer, C. Chang, and L. Lin, “Piezoelectric nanofibers for energy scavenging applications,” Nano Energy, vol. 1, pp. 356-371, 2012.
[25] G. Taylor, “Electrically driven jets,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 313, pp. 453-475, 1969.
[26] L. Rayleigh, “XX. On the equilibrium of liquid conducting masses charged with electricity,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 14, pp. 184-186, 1882.
[27] J. F. C. W. J. Morton, “U.S Patent,” pp. 692,631, 1902.
[28] A. Formhals, “US Patent,” p. No. 1975504, 1936.
[29] W. Teo and S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies,” Nanotechnology, vol. 17, p. R89, 2006.
[30] Z. Zhao, J. Li, X. Yuan, X. Li, Y. Zhang, and J. Sheng, “Preparation and properties of electrospun poly (vinylidene fluoride) membranes,” Journal of applied polymer science, vol. 97, pp. 466-474, 2005.
[31] X. Ren and Y. Dzenis, “Novel continuous poly (vinylidene fluoride) nanofibers,” in Materials Research Society Symposium Proceedings, 2006, p. 55.
[32] C. Chang, Y.K. Fuh, and L. Lin, “A direct-write piezoelectric PVDF nanogenerator,” in Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International, 2009, pp. 1485-1488.
[33] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano letters, vol. 10, pp. 726-731, 2010.
[34] D. Sun, C. Chang, S. Li, and L. Lin, “Near-field electrospinning,” Nano letters, vol. 6, pp. 839-842, 2006.
[35] C. Chang, V. H. Tran, J. Wang, Y. Fuh, and L. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano letters, vol. 10, pp. 726-731, 2010.
[36] C. Chang, K. Limkrailassiri, and L. Lin, “Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns,” Applied Physics Letters, vol. 93, pp. 123111-123111-3, 2008.
[37] J. Pu, X. Yan, Y. Jiang, C. Chang, and L. Lin, “Piezoelectric actuation of a direct write electrospun PVDF fiber,” in Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, 2010, pp. 1163-1166.
[38] B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, “Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning,” Polymer, vol. 45, pp. 1895-1902, 2004.
[39] Y. Liu and J. H. He, “Bubble electrospinning for mass production of nanofibers,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 8, pp. 393-396, 2007.
[40] X. Wang, H. Niu, T. Lin, and X. Wang, “Needleless electrospinning of nanofibers with a conical wire coil,” Polymer Engineering & Science, vol. 49, pp. 1582-1586, 2009.
[41] S. Theron, E. Zussman, and A. Yarin, “Experimental investigation of the governing parameters in the electrospinning of polymer solutions,” Polymer, vol. 45, pp. 2017-2030, 2004.
[42] O. Dosunmu, G. Chase, W. Kataphinan, and D. Reneker, “Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface,” Nanotechnology, vol. 17, p. 1123, 2006.
[43] Y. K. Fuh, L. C. Lien, and S. Y. Chen, “High-throughput production of nanofibrous mats via a porous materials electrospinning process,” Journal of Macromolecular Science, Part B, vol. 51, pp. 1742-1749, 2012.
[44] L. Wannatong, A. Sirivat, and P. Supaphol, “Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene,” Polymer International, vol. 53, pp. 1851-1859, 2004.
[45] D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology, vol. 7, p. 216, 1996.
[46] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, “Processing and microstructural characterization of porous biocompatible protein polymer thin films,” Polymer, vol. 40, pp. 7397-7407, 1999.
[47] S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit,” Polymer, vol. 46, pp. 3372-3384, 2005.
[48] S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, “Micro-and nanostructured surface morphology on electrospun polymer fibers,” Macromolecules, vol. 35, pp. 8456-8466, 2002.
[49] I. S. Yeo, J. E. Oh, L. Jeong, T. S. Lee, S. J. Lee, W. H. Park, and B. M. Min, “Collagen-based biomimetic nanofibrous scaffolds: preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures,” Biomacromolecules, vol. 9, pp. 1106-1116, 2008.
[50] Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: a review,” Tissue engineering, vol. 12, pp. 1197-1211, 2006.
[51] X. Wang, C. Drew, S. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, “Electrospun nanofibrous membranes for highly sensitive optical sensors,” Nano letters, vol. 2, pp. 1273-1275, 2002.
[52] Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites science and technology, vol. 63, pp. 2223-2253, 2003.
[53] S. Sugiyama, M. Takigawa, and I. Igarashi, “Integrated piezoresistive pressure sensor with both voltage and frequency output,” Sensors and Actuators, vol. 4, pp. 113-120, 1983.
[54] A. V. Chavan and K. D. Wise, “Batch-processed vacuum-sealed capacitive pressure sensors,” Microelectromechanical Systems, Journal of, vol. 10, pp. 580-588, 2001.
[55] A. Choujaa, N. Tirole, C. Bonjour, G. Martin, D. Hauden, P. Blind, A. Cachard, and C. Pommier, “AlN/silicon Lamb-wave microsensors for pressure and gravimetric measurements,” Sensors and Actuators A: Physical, vol. 46, pp. 179-182, 1995.
[56] M. A. Fonseca, J. M. English, M. Von Arx, and M. G. Allen, “Wireless micromachined ceramic pressure sensor for high-temperature applications,” Microelectromechanical Systems, Journal of, vol. 11, pp. 337-343, 2002.
[57] N. A. Hall and F. L. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Applied Physics Letters, vol. 80, pp. 3859-3861, 2002.
[58] 李慶專, “應用田口實驗法於快速原型系統參數之研究,” ,國立台灣科技大學 高分子工程系,碩士論文, 2006.
[59] T. R. Bement, “Taguchi Techniques for Quality Engineering,” Technometrics, vol. 31, pp. 253-255, 1989.
[60] 丁志華, 游璨瑋, and 戴寶通, “田口實驗計畫法簡介,” 毫微米通訊第八卷第三期, 2002.
[61] M. I. Boulos, “Thermal plasma processing,” Plasma Science, IEEE Transactions on, vol. 19, pp. 1078-1089, 1991.
[62] C. R. Rao, “Note on a problem of Ragnar Frisch,” Econometrica, Journal of the Econometric Society, pp. 245-249, 1947.
[63] 蘇朝墩, “品質工程,” 品質工程,中華民國品質學會, 2002.
[64] 鐘清章, “品質工程(田口方法),” 中華民國品質學會, 2000 年.
[65] 陳耀茂, “田口實驗計劃法,” 滄海書局, 1997.
[66] Z.H. Liu, C.T. Pan, Z.Y. Ou, and W. C. Wang, “Piezoelectricity of PVDF fibrous thin film fabricated by near-field electrospinning on cylindrical process,” IEEE International Conference on, 2012.
[67] W. A. Yee, M. Kotaki, Y. Liu, and X. Lu, “Morphology, polymorphism behavior and molecular orientation of electrospun poly (vinylidene fluoride) fibers,” Polymer, vol. 48, pp. 512-521, 2007.
[68] V. Cardoso, G. Minas, C. M. Costa, C. Tavares, and S. Lanceros-Mendez, “Micro and nanofilms of poly (vinylidene fluoride) with controlled thickness, morphology and electroactive crystalline phase for sensor and actuator applications,” Smart Materials and Structures, vol. 20, p. 087002, 2011.
[69] R. Magalhães, N. Durães, M. Silva, J. Silva, V. Sencadas, G. Botelho, J. Gómez Ribelles, and S. Lanceros Méndez, “The role of solvent evaporation in the microstructure of electroactive β-poly (vinylidene fluoride) membranes obtained by isothermal crystallization,” Soft Materials, vol. 9, pp. 1-14, 2010.
[70] P. Parks, B. Cheng, Z. Hu, and X. Deng, “Translational damping on flapping cicada wings,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, 2011.
[71] A.Magnan, “Le vol des Insectes,” Paris, Hermann, 1934.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.221.43.155
論文開放下載的時間是 校外不公開

Your IP address is 54.221.43.155
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code