Responsive image
博碩士論文 etd-0715114-131520 詳細資訊
Title page for etd-0715114-131520
論文名稱
Title
延伸式閘極場效電晶體離子感測器之溫度補償與校正電路研發
Development of Temperature Compensation and Calibration Circuits for EGFET-based Ion Sensor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-19
繳交日期
Date of Submission
2014-08-29
關鍵字
Keywords
溫度效應、延伸式閘極場效電晶體、溫度補償與校正電路、微機電系統
compensation and calibration circuit, temperature effect, micro-electromechanical system, extended-gate field-effect transistor
統計
Statistics
本論文已被瀏覽 5645 次,被下載 0
The thesis/dissertation has been browsed 5645 times, has been downloaded 0 times.
中文摘要
近十年以來,各種不同結構設計與感測機制的離子感測器已被廣泛應用於工業、環境檢測與生醫等不同領域,然而不同溫度下之待測溶液常會造成離子感測器之讀值有所誤差產生。有鑑於此本論文將開發一種延伸式閘極場效電晶體 (Extended-gate Field-effect Transistor, EGFET)為基礎之微型離子感測器晶片,並探討其輸出特性受不同溫度(20℃~50℃)之影響(pH讀值誤差高達12.71% ~ 15.43%),以及開發一種可以大幅降低其pH讀值誤差之溫度補償與校正電路。
本論文利用半導體製程設計製作一種延伸式閘極場效電晶體(Extended-gate Field-effect Transistor, EGFET),並結合橋式讀出電路、溫度感測器與溫度感測器校正電路以及訊號差分溫度補償電路,完成能夠進行溫度補償的模組,用橋式讀出電路讀出微型感測器在訊號輸出時受溫度影響的變化,而使用溫度感測器量測緩衝液受溫度影響產生的電壓訊號,再將其量測到的電壓訊號藉由溫度感測校正電路進行電壓訊號的校正,最後將校正完後的訊號與微型感測器輸出訊號一起輸入訊號差分溫度補償電路進行整體的溫度補償電壓輸出。本研究將探討分析溫度補償前後對pH值酸鹼值變化特性的影響,進而得到溫度補償使用範圍。
本論文所使用之EGFET微型離子感測器之尺寸為11 mm × 13 mm × 0.5 mm,感測區域之面積為1 mm × 1 mm,量測溫度為20℃~50℃,待測溶液之pH值為pH2~pH10,在微型感測器經補償電路作溫度補償後的量測結果顯示除了50℃下無明顯補償效果以外,20℃~45℃範圍內皆有相當好的補償效果,沒有溫度補償校正時,20℃下平均pH讀值誤差為12.71%,45℃下平均pH讀值誤差為15.43%,有溫度補償校正時,20℃下平均pH讀值誤差為8.16%,45℃下平均pH讀值誤差為11.38%。本論文成功開發一種具溫度補償與校正功能之延伸式閘極場效電晶體離子感測器,其應用範圍在20℃~ 45℃之下,而pH讀值誤差控制在8.16%。
Abstract
In the last decade,various structural designs and sensing mechanisms of ion sensors have been widely used in industrial,environmental monitoring and biomedical areas.However,the sensing characteristics of those ion sensors are obviously affected by the temperature of testing solution and therefore results in wrong readouts.To improve this issue,this thesis devoted to develop an extended-gate field-effect transistor(EGFET) based micro ion sensors with temperature compensation and calibration functions.The output characteristics of the presented EGFET ion sensors are measured under different temperatures (20℃~50℃) and various hydrogen ion concentrations (pH2~pH10).
This thesis utilizes micro-electromechanical systems (MEMS) technology to develop EGFET-based micro ion sensors.The signal readout circuit is built by four components:bridge readout circuit,temperature sensors,temperature calibration circuit and differential temperature compensation circuit.The EGFET-based micro ion sensor and the signal readout circuit are combined to form the EGFET-based ion sensor with temperature compensation and calibration functions.The main processing steps of the EGFET in this study involue four photolithographic and two thin-film deposition processes.The influence of output characteristics before and after the temperature compensation,and the temperature range of compensation could be obtain in this study.
The chip size of the EGFET microsensor is 11 mm × 13 mm × 0.5 mm and the sensing area is 1 mm × 1 mm.The temperature range of the measured standard buffer solution is from 20℃ to 50℃,and the various hydrogen of the standard buffer solution is from pH2 to pH10.The measured results show that the temperature compensation circuit has excellent compensation effect under 20℃~45℃, respectively,without temperature compensation.After temperature compensation,the average error the various hydrogen have become 12.71% and 15.43% under 20℃ and 45℃,respectively,without temperature compensation.After temperature compensation, the average error of the various hydrogen have become 8.16% and 11.38% under 20℃ and 45℃,respectively.The temperature compensation and calibration circuit in this study has significantly reduce the error of the signal readout characteristic.
目次 Table of Contents
論文審定書.....................................................................i
誌謝..............................................................................iii
摘要..............................................................................iv
Abstract.........................................................................v
目錄.............................................................................vii
圖目錄...........................................................................x
表目錄.........................................................................xii
第1章  緒論 .....................................................................1
1.1 前言..............................................................................1
1.2 研究動機........................................................................1
1.3 實驗方法及論文架構........................................................2
第2章 原理介紹...............................................................4
2.1 感測器種類 ....................................................................4
2.2 延伸式閘極感測場效電晶體原理介紹.................................7
2.2.1 吸附鍵結模型...............................................................8
2.2.2 延伸式閘極感測場效電晶體工作原理...............................9
2.3 離子感測器之補償與校正.................................................11
2.3.1 溶液溫度效應..............................................................12
2.3.2 參考電極溫度效應........................................................13
2.3.3 緩衝液與感測膜界面.....................................................13
2.3.4 EGFET 臨界電壓溫度效應 ...........................................14
2.4 感測器之溫度補償...........................................................15
2.4.1 橋式讀出電路架構........................................................16
2.4.2 溫度補償電路..............................................................19
2.4.3 感測器準位校正原理 ...................................................20
2.4.4 訊號差分溫度補償原理.................................................22
第3章 元件設計與製作....................................................25
3.1 延伸式閘極感測場效電晶體元件....................................25
3.1.1 延伸式閘極場效電晶體結構與光罩佈局設計.................25
3.1.2 延伸式閘極場效電晶體製程整合設計...........................28
3.1.3 詳細製程步驟與參數................................................. 29
3.2 氯離子感測薄膜配製.....................................................35
3.2.1 實驗藥品及材料........................................................35
3.2.2 感測薄膜配製...........................................................35
3.3 溫度感測器補償電路製作...............................................36
3.3.1 橋式源極訊號讀取電路...............................................36
3.3.2 溫度感測器之準位校正電路.........................................38
3.3.3 訊號差分溫度補償電路...............................................39
3.3.4 量測用溶液成份與酸鹼值...........................................40
第4章 結果與討論........................................................42
4.1 延伸式閘極場效電晶體.................................................42
4.1.1 延伸式閘極場效電晶體量測分析.................................43
4.2 離子感測器特性量測分析..............................................44
4.2.1 感測靈敏度與線性度分析...........................................44
4.3 溫度感測器補償輸出結果..............................................46
4.3.1 橋式訊號讀出電路之量測結果....................................48
4.3.2 溫度感測器之量測結果..............................................49
4.3.3 準位校正之量測結果.................................................51
4.3.4 訊號差分溫度補償之量測結果....................................52
第5章 結論與未來展望.................................................59
5.1 結論..........................................................................59
5.2 未來展望....................................................................60
參考文獻..........................................................................62
參考文獻 References
[1] E. Lauwers, J. Suls, W. Gumbrecht, D. Maes, G. Gielen, and W. Sansen, “A CMOS multiparameter biochemical microsensor with temperature control and signal interfacing,” IEEE J. Solid-State Circuits. 36(12), 2030-2038 (2001).
[2] M. Cremer, “Zeitschrift for Biologie,” 562-608, Berlin (1906).
[3] P. Bergveld, “Development of an Ion-sensitive Solid-State device for Neurophysiological measurements,” IEEE Trans. Biomed. Eng. 17(1), 70-71 (1970).
[4] P. Bergveld, “Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuators B: Chem. 88(1), 1-20 (2003).
[5] C. J. Jorquera, O. Jahir, and B. Antoni, “ISFET based microsensors for environmental monitoring,” Sensors 10(1), 61-83 (2010).
[6] J. Van Der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. Actuators B: Chem. 4 , 291-298 (1983).
[7] J. Schoning, and A. Poghossian, “Recent advances in biologically sensitive Field-effect Transistors,” Analyst. 127(9), 1137-1151 (2002).
[8] D. E. Yates, S. Levine, and T. W. Healy, “Site-binding mode of the electrical double layer at the oxide/water interface,” J. Chem. Soc. Faraday Trans.70, 1807-1818 (1974).
[9] J.-J. Xu, X.-L. Luo, and H.-Y. Chen, “Analytical aspects of FET-based biosensors,” Front. Biosci. 10(1-3), 420-430 (2005).
[10] D. G. Pijanowska, “Analysis of Factors Determining Parameters of Ion-Sensitive Field Effect Transistors as the Sensors of Biochemical Quantities,” Instytut Biocybernetyki I Inzynierii Biomedycznej, (1996).
[11] S. Martinoia, N. Rosso, M. Grattarola, L. Lorenzelli, B. Margesin, and M. Zen, “Development of ISFET array-based microsystems for bioelectrochemical measurements of cell poplations,” Biosens. Bioelectron. 16(9-12), 1043-1050 (2001).
[12] W. H. Baumann, M. Lehmann, A. Schwinde, R. Ehret, M. Brischwein, B. Wolf, “Microelectronic sensor system for microphysiological application on living cells,” Sens. Actuators B: Chem. 55(1), 77-89 (1999).
[13] K. Sawada, T. Ohshina, T. Hizawa, H. Takao, and M. Ishida, “A novel fused sensor for photo- and ion-sensing,” Sens. Actuators B: Chem. 106(2), 614-618 (2005).
[14] S. Casans, Diego Ramirez Munoz, A. E. Navarro, and A. Salazar, “ISFET drawbacks minimization using a novel electronic compensation,” Sens. Actuators B: Chem. 99(1), 42-49 (2004).
[15] S. Birrell, “Multi-ISFET Sensor system for Soil Nitrate Sensing,” Department of Agricultural Engineering, University of Illinois (1997).
[16] L. Lorenzelli, B. Margesin, S. Martinoia, M. T. Tedesco, and M. Valle, “Bioelectrochemical signal monitoring of in-vitro cultured cells by means of an automated microsystem based on Solid State Sensor-Array,” Biosens. Bioelectron. 18(5-6), 621-626 (2003).
[17] R. L. Smith and D. C. Scott, “An integrated sensor for electrochemical measurements,” IEEE Trans. Biomed. Eng.33, 83-90 (1986).
[18] M. J. Milgrew, P. A. Hammond, and D. R. S. Cumming, “The development of scalable sensor arrays using standard CMOS technology,” Sens. Actuators B: Chem. 103(1-2), 37-42 (2004).
[19] E. Lauwers, J. Suls, W. Gumbrecht, D. Maes, G. Gielen, and W. Sansen, “A CMOS multiparameter biochemical microsensor with temperature control and signal interfacing,” IEEE J. Solid-State Circuits. 36(12), 2030-2038 (2001).
[20] J.-C. Chou, Y.-F. Wang, “Temperature Characteristics of a-Si:H Gate ISFET,” Mater. Chem. Phys. 70(1), 107-111 (2001).
[21] Y.-L. Chin, J.-C. Chou, T.-P. Sun, W.-Y. Chung, and S.-K. Hsiung, “A novel pH sensitive ISFET with on chip temperature sensing using CMOS standard process,” Sens. Actuators B: Chem. 76(1-3), 582-593 (2001).
[22] X. K. Ping, B. Philippe, and N. Seiichi, “A Chloride Ion-Selective solvent polymeric membrane electrode based on a hydrogen bond forming ionophore,” Anal. Chem. 69(6), 1038-1044 (1997).
[23] L. Monika, W. Marcin, and B. Ewa, “Chloride-Selective electrodes with poly(n-butyl acrylate) based membranes,” Electroanalysis. 19(2-3), 393-397 (2007).
[24] X. Li, M. Ju, and X. Li, “Chlorine Ion Sensor based on polyaniline film electrode,” Sens. Actuators B: Chem. 97(1), 144-147 (2004).
[25] B. Andrey, A. Natalia, and D. Carlos, “Investigation of Chloride Sensitive ISFETs with different membrane compositions suitable for medical applications,” Anal. Chem. 514(1), 99-106 (2004).
[26] I.-Y. Huang, R.-S. Huang, and L.-H. Lo, “Improvement of integrated/Ag/AgCl thin-film electrodes by KCl-gel coating for ISFET applications,” Sens. Actuators B: Chem. 94(1), 53-64 (2003).
[27] R. Ali, S. M. Saleh, R. J. Meier, H. A. Azab, I. I. Abdelgawad, and O. S. Wolfbeis, “Upconverting nanoparticle based optical sensor for carbon dioxide,” Sens. Actuators B: Chem. 150(1), 126-131 (2010).
[28] A. J. Bard, L. R. Faulkner, “Electrochemical methods fundamentals and applications,” John Wiley & Sons, Inc., New York (2001).
[29] J. G. Webster, “Electrical impedance tomography,” Adam Hilger (1990).
[30] P. Kurzweil, “Electrochemical double-layer capacitors,” Encyclopedia of Electrochemical Power Sources, 607-633 (2009).
[31] T. Sato, G. Masuda, and K. Takagi, “Electrochemical properties of novel ionic liquids for electric double layer capacitor applications,” Electrochim. Acta 49(21), 3603-3611 (2004).
[32] 劉康義,離子感測場效電晶體巨集行為模型開發與感測陣列訊號處理電路設計,中原大學電子工程學系碩士學位論文,2004
[33] 阮呂軍昇,運用微機電系統技術開發納/鈣/銨/氯多重離子微型感測晶片,中山大學電機工程學系碩士論文,2013。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.254.0
論文開放下載的時間是 校外不公開

Your IP address is 18.191.254.0
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code