Responsive image
博碩士論文 etd-0715114-155001 詳細資訊
Title page for etd-0715114-155001
論文名稱
Title
利用碳酸氫銨溶液處理廢鉛蓄電池中鉛膏之再利用研究
Recycling Lead Paste from Scrap Lead Battery by Using Ammonium Bicarbonate Solution
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-19
繳交日期
Date of Submission
2014-08-15
關鍵字
Keywords
氨水、碳酸氫銨、鉛膏、二氧化碳、廢鉛蓄電池
carbon dioxide, lead paste, ammonium bicarbonate, ammonia solution, Waste lead-acid battery
統計
Statistics
本論文已被瀏覽 5673 次,被下載 202
The thesis/dissertation has been browsed 5673 times, has been downloaded 202 times.
中文摘要
鉛蓄電池做為全世界鉛產品的主要去處,同時也是再生鉛的主要來源。隨著鉛礦資源的日益枯竭和含鉛廢棄物產量的迅速增加,廢鉛蓄電池的回收成為現代社會的必然趨勢。廢鉛蓄電池的處理一般先經破碎後分選,產生板柵、鉛膏和塑膠三種成份。而鉛膏(含鉛泥、鉛砂)為廢鉛蓄電池中成份最複雜的組成部份,若直接丟棄會對環境造成嚴重的危害。並且廢鉛蓄電池回收物料中鉛膏含有大量硫酸鉛成份,其回收率高低直接影響廢鉛蓄電池再利用成本及市場競爭力。故本研究主要針對廢鉛蓄電池的鉛膏回收處理進行探討。
本研究係採用碳酸氫銨為脫硫劑,與鉛膏中的硫酸鉛(PbSO4)反應生成碳酸鉛(PbCO3),達到鉛膏脫硫的目標,以致可以提高鉛產品純度及價值、提升廢鉛蓄電池再利用比率、降低污染排放、改善管線腐蝕現象、減少能源消耗及改善異味污染等問題,以元素分析儀(EA)對反應前後的鉛膏進行硫含量分析,根據鉛膏的脫硫效率,探討碳酸氫銨添加量、攪拌時間及攪拌轉速對鉛膏脫硫效率的影響。尤其本研究中碳酸氫銨的製備係利用氨水吸收煙道氣中的二氧化碳,不但可以製備脫硫劑碳酸氫銨,還可降低廢氣中溫室氣體二氧化碳的排放,並進行CO2吸收效率及對鉛膏脫硫效率的探討,建立一套完整的創新性資源再利用循環系統。最後對脫硫後的鉛膏進行火法處理,將其還原成鉛錠。並對鉛膏脫硫過程中產生的副產物硫酸銨濾液進行再利用,探討氫氧化鈣添加量、攪拌時間及攪拌轉速對硫酸根離子去除效率的影響。
比較碳酸鈉及碳酸氫銨兩種不同脫硫劑進行鉛膏置換反應,當兩者皆達到完全反應時,本研究所採用的脫硫劑碳酸氫銨與碳酸鈉具有相當的脫硫效果,甚至比碳酸鈉的脫硫效果更佳,實驗證實碳酸氫銨確實可應用在鉛膏脫硫的技術上。碳酸氫銨與鉛膏反應的最佳條件如下:碳酸氫銨與鉛膏的重量比為0.5,攪拌反應時間為60 min,轉速為150 rpm,此時鉛泥、鉛砂的脫硫效率幾乎達到最高值(鉛泥-脫硫效率99.31%,鉛砂-脫硫效率91.52%)。
本研究證實氨水吸收二氧化碳生成的碳酸氫銨溶液可應用在鉛膏的脫硫上。模擬實廠煙道氣中二氧化碳濃度15%,以不同濃度氨水(0.5~18%)進行吸收,吸收二氧化碳1 hr後,溶液中的pH值都處於6.3~10.3之間,說明溶液中主要產物應為碳酸氫銨(NH4HCO3)。二氧化碳吸收的最佳條件為氨水濃度10%,吸收二氧化碳時間1 hr,進氣流率1 L/min,此時15% CO2的吸收效率為93.52%。鉛膏脫硫的最佳條件為氨水濃度2%,吸收二氧化碳時間1 hr,進氣流率3 L/min,與鉛膏的攪拌反應時間60 min,轉速150 rpm,此時鉛泥-脫硫效率94.65%,鉛砂-脫硫效率87.78%,比試藥級碳酸氫銨對鉛膏的脫硫效率略低。
硫酸銨濾液與氫氧化鈣置換反應實驗中,轉速對SO42-去除效率的影響可忽略,最佳的氫氧化鈣添加量為2.5 g,反應時間為70 min,此時SO42-去除效率能達到70%以上,將二氧化碳通入反應後所得的氨水濾液中,即可再生碳酸氫銨脫硫劑,用於鉛膏的脫硫技術上。脫硫後的鉛膏,主要成份由硫酸鉛變成碳酸鉛,經高溫(850℃)還原,即可得到鉛錠。與傳統反射冶煉爐(1200℃)相比,此種方法不僅可減少能源的消耗,且鉛膏中的硫先經置換,會減少SO2的污染排放,改善管線腐蝕的現象。
Abstract
Lead-acid batteries as the main product for the world’s lead production, is also a major source of secondary lead. With the increasing depletion of lead mine and the rapid increase of waste lead production, recycling the waste lead-acid batteries has become an inevitable trend of modern society. Waste lead-acid batteries are generally treated by breaking and separation, producing grids, lead pastes, and plastics. Lead paste (including lead mud and lead sand) is the most complicate portion in the waste lead-acid batteries. If discarded directly, it worsed cause serious environmental problems. During the waste lead-acid batteries recycling process, lead paste is abundant of lead sulfate whose recovery ratio worsed highly influence battery recycling profit and market competition. Thus, this study aimed to improve and upgrade the existing battery recycling technology for lead paste.
In this study, ammonium bicarbonate as the desulfurization reagent was used to convert lead sulfate (PbSO4) to lead carbonate (PbCO3). The advantages of this innovative technology included high purity and price of lead products, high recycling efficiency of waste lead-acid battery, low emission of acidic air pollutants, less corrosion problems of pipelines, low energy consumption, and low odorous pollution problems. An elemental analyzer (EA) was applied to analyze the sulfur content of the lead paste before and after the reaction. According to the desulfurization efficiency of lead paste, we explored the influences of ammonium bicarbonate addition, stirring time, and stirring speed on the desulfurization efficiency. In particular, ammonium bicarbonate can be reproduced by absorbing carbon dioxide in the flue gas with ammonia solution. This innovative technology could not only produce ammonium bicarbonate, but also reduced the emission of greenhouse gases from stacks, and further investigated the absorption efficiency of CO2 and the desulfurization efficiency of lead paste, and thus established an innovative and comprehensive resource recycling system. Finally, the lead paste was then conducted in a pyrometallurgical reduction process to produce lead ingots. By adding calcium hydroxide, this study also investigated the stirring time and stirring speed on the removal efficiency of sulfate ion to the ammonium sulfate filtrate.
Sodium carbonate and ammonium bicarbonate as desulfurization reagents, both accomplished complete reactions, and had considerable desulfurization effect, ammonium bicarbonate demonstrated better desulfurization efficiency than that of sodium carbonate. Experimental results confirmed that ammonium bicarbonate can be applied in the lead paste’s desulfurization technology. The optimum operating parameters for lead paste and ammonium bicarbonate reaction were as follows: the mass ratio of 0.5 for ammonium bicarbonate and lead paste, the reaction time of 60 min, and the stirring speed of 150 rpm. In this case, lead mud and lead sand almost achieved their highest desulfurization efficiency (99.31% for lead mud and 91.52% for lead sand).
This study concluded that ammonium bicarbonate can be successfully applied for lead paste desulfurization, which can be produced by absorbing carbon dioxide with ammonia solution. The concentration of carbon dioxide simulated in the flue gas was 15%. With different concentration of ammonia solution (0.5~18%) to absorb CO2 for 1 hr, the pH values of the solution ranged between 6.3 and 10.3, indicating that the major reaction product was ammonium bicarbonate (NH4HCO3). The optimal conditions for the absorption of CO2 were as follows: the concentration of ammonia solution of 10%, CO2 absorption time of 1 hr, and the intake air flow of 1 L/min. The maximum absorption efficiency of 15% CO2 was 93.52%. The optimal conditions for the desulfurization of lead paste were as follows: the concentration of ammonia solution of 2%, CO2 absorption time of 1 hr, the intake air flow of 3 L/min, the reaction time of 60 min, and the stirring speed of 150 rpm. Under this circumstance, the desulfurization efficiency of lead mud was 94.65%, the desulfurization efficiency of lead sand was 87.78%, which was slightly lower than the chemical reagent ammonium bicarbonate.
For conducting the experiments of ammonium sulfate filtrate reacting with calcium hydroxide, the stirring speed can be negligible for the removal efficiency of sulfate ion, the optimal amount of calcium hydroxide added was 2.5 g and the reaction time was 70 min, which could achieve the removal efficiency of sulfate ion higher than 70%. By purging CO2 into the ammonia solution filtrate, ammonium bicarbonate could be regenerated. The main component of the desulfurized lead paste was lead sulfate and converted to lead carbonate which can be reduced to form lead ingots at 850℃. Compared to traditional reflection smelting furnace operating at 1200℃, this innovative technology could not only maintain low energy consumption, but could also reduce the emission of SO2, and thus improve the corrosion problem.
目次 Table of Contents
目 錄 頁次
論文審定書……………………………………………...…..…….………… i
謝誌……………………………………………………...…..…….………… ii
中文摘要………………………………………………...…..…….………… iii
英文摘要……………………………………………...…..…….…………… v
目錄…………………………………………………...…..…….…………… viii
表目錄……………………………………………………………………….. xii
圖目錄……………………………………………………….…...……….…. xiv
第一章 前言………………………………………………..……..………… 1
1-1研究緣起……………….………………….………..….………….... 1
1-2研究目的………………………………….………….…...……….... 3
1-3研究範圍及架構………………………….………………………… 3
第二章 文獻回顧………………………………………..………..………… 6
2-1鉛的特性、來源及產量分佈..……………………………………… 6
2-1-1鉛的物化特性……...……………..……..……………………… 6
2-1-2鉛的來源及產量分佈……................………………….……….. 8
2-2廢鉛蓄電池的前處理…..................………………….……………... 11
2-2-1鉛蓄電池的產生………………………………….…………...... 11
2-2-2廢鉛蓄電池回收現況…………….………….............................. 14
2-2-3廢鉛蓄電池的前處理…………….………….............................. 16
2-3 鉛膏的回收技術……...…………..…..…………………………….. 18
2-3-1火法回收技術………………………………….……………….. 18
2-3-2濕法回收技術………………………………….……………….. 19
2-3-2-1鉛膏轉化-浸出-電解技術………………………………. 19
2-3-2-2鉛膏直接浸出-電解技術……………………………….. 24
2-3-2-3鉛膏直接電解技術……………………………………… 25
2-3-3乾濕聯合法回收技術…………………………………………... 27
2-4二氧化碳的吸收技術……………………………………………….. 29
2-4-1吸收法…………………………………………………………... 30
2-4-2吸附法…………………………………………………………... 35
2-4-3低溫蒸餾法……………………………………………………... 35
2-4-4膜分離法………………………………………………………... 36
2-4-5電化學法………………………………………………………... 36
2-5利用氨水溶液吸收二氧化碳之反應……………………………….. 37
2-5-1氣體吸收原理…………………………………………………... 37
2-5-2氨水吸收CO2的反應原理…………………………………….. 38
2-5-3氨水吸收二氧化碳法的優缺點………………………………... 40
第三章 研究方法……………………………………..…………………….. 43
3-1實驗材料............................………....…..…………............................ 43
3-2實驗設備……………............……….……………............................. 45
3-2-1 分析儀器..........…....................................................................... 45
3-2-2 其他實驗設備.....….................................................................... 49
3-3實驗步驟........……….……………..................................................... 51
3-3-1反應前樣品前處理……………….............................................. 51
3-3-2脫硫效率實驗分析與驗證…………........................................... 51
3-3-3氨水吸收二氧化碳實驗……....................................................... 52
3-3-4模擬實廠煙道氣中二氧化碳進行氨水吸收實驗....................... 53
3-3-5硫酸銨濾液與氫氧化鈣置換反應實驗....................................... 54
3-3-6碳酸鉛還原實驗........................................................................... 55
3-3-7硫酸銨濾液蒸發結晶實驗……................................................... 55
第四章 結果與討論……………………………………..………………….. 56
4-1反應前鉛膏樣品之分析....................………....…..…………............ 56
4-1-1反應前鉛膏樣品之SEM、EDS分析....………....……………. 56
4-1-2反應前鉛膏樣品之XRD分析....………....…………………… 57
4-1-3反應前鉛膏樣品之EA分析....………....……………………… 58
4-2試藥級碳酸氫銨對鉛膏的脫硫實驗...……….…………….............. 59
4-2-1 碳酸氫銨脫硫劑添加量對鉛膏脫硫效率的影響..........…....... 60
4-2-2攪拌反應時間對鉛膏脫硫效率的影響....................................... 61
4-2-3 攪拌轉速對鉛膏脫硫效率的影響.....….................................... 62
4-2-4碳酸氫銨與碳酸鈉脫硫劑比較....………....…………………... 64
4-3氨水吸收二氧化碳生成碳酸氫銨溶液對鉛膏的脫硫實驗....…….. 68
4-3-1氨水濃度對鉛膏脫硫效率的影響....………....………………... 68
4-3-2二氧化碳進氣流率對鉛膏脫硫效率的影響....………....……... 70
4-3-3二氧化碳吸收時間對鉛膏脫硫效率的影響....………....……... 71
4-3-4鉛膏反應時間對鉛膏脫硫效率的影響....………....…………... 73
4-3-5氨水吸收二氧化碳的產物晶體分析....………....……………... 75
4-4模擬實廠煙道廢氣中二氧化碳濃度之氨水吸收....………....…….. 77
4-4-1氨水吸收15% CO2之pH值變化....………....………………… 77
4-4-2操作參數對二氧化碳吸收效率之影響....………....…………... 81
4-4-3操作參數對鉛膏脫硫效率之影響....………....………………... 85
4-5硫酸銨濾液與氫氧化鈣置換反應....………....…………………….. 90
4-6鉛膏的還原....………....…………………………………………….. 94
4-7硫酸銨濾液蒸發結晶……....………....…………………………….. 96
4-8本法與傳統法之優缺點比較………....…………………………….. 99
第五章 結論與建議……………………………………..………………….. 101
5-1結論……………………………………..…………………………… 101
5-2建議……………………………………..…………………………… 102
參考文獻……………………………………..……………………………… 104
附錄A 分析儀器之品保品管………………………………………………. 115
附錄B 分析儀器之檢量線…………………………………………………. 120
附錄C 原始實驗數據………………………………………………………. 123



















表 目 錄 頁次
表2-1 世界鉛儲量分佈…………..………………………………………… 9
表2-2 1998~2008年世界鉛產量、消費量和價格……………..………….. 10
表2-3 廢鉛蓄電池稽核認證回收統計表.…………………………………. 15
表2-4 一種廢鉛蓄電池含鉛物質的典型組成……………………….......... 17
表2-5 醇胺法吸收CO2優缺點比較 ……………………………………… 32
表4-1 鉛膏反應前樣品元素分析結果彙整表(EA)…………………….. 59
表4-2 不同碳酸氫銨添加量對於鉛泥脫硫效率之影響………………….. 60
表4-3 不同碳酸氫銨添加量對於鉛砂脫硫效率之影響………………….. 60
表4-4 不同反應時間對於鉛泥脫硫效率之影響………………………….. 61
表4-5 不同反應時間對於鉛砂脫硫效率之影響………………………….. 62
表4-6 不同攪拌轉速對於鉛泥脫硫效率之影響………………………….. 63
表4-7 不同攪拌轉速對於鉛砂脫硫效率之影響………………………….. 63
表4-8 不同碳酸鈉添加量對於鉛泥脫硫效率之影響……………….......... 64
表4-9 不同反應時間對於鉛泥脫硫效率之影響………………….............. 64
表4-10 不同碳酸鈉添加量對於鉛砂脫硫效率之影響………………….... 65
表4-11 不同反應時間對於鉛砂脫硫效率之影響…………….................... 65
表4-12 不同氨水濃度對於鉛泥脫硫效率之影響........................................ 68
表4-13 不同氨水濃度對於鉛砂脫硫效率之影響........................................ 68
表4-14 二氧化碳進氣流率對於鉛泥脫硫效率之影響................................ 70
表4-15 二氧化碳進氣流率對於鉛砂脫硫效率之影響................................ 70
表4-16 二氧化碳吸收時間對於鉛泥脫硫效率之影響…............................ 72
表4-17 二氧化碳吸收時間對於鉛砂脫硫效率之影響................................ 72
表4-18 不同反應時間對於鉛泥脫硫效率之影響........................................ 73
表4-19 不同反應時間對於鉛砂脫硫效率之影響........................................ 74
表4-20 氨水吸收二氧化碳之產物晶體元素分析結果彙整表(EA)........... 76
表4-21 不同濃度氨水吸收15% CO2在不同時間的pH值.......................... 77
表4-22 不同濃度氨水溶液中反應前後NH4+濃度的變化及損失率........... 82
表4-23 不同氨水濃度對於鉛泥脫硫效率之影響........................................ 85
表4-24 不同氨水濃度對於鉛砂脫硫效率之影響........................................ 85
表4-25 二氧化碳進氣流率對於鉛泥脫硫效率之影響................................ 87
表4-26 二氧化碳進氣流率對於鉛砂脫硫效率之影響................................ 87
表4-27 二氧化碳吸收時間對於鉛泥脫硫效率之影響................................ 88
表4-28 二氧化碳吸收時間對於鉛砂脫硫效率之影響................................ 89
表4-29 碳粉元素分析結果彙整表(EA)....................................................... 95
表4-30 鉛泥經碳酸氫銨多次脫硫後之效率(EA)....................................... 97
表4-31 硫酸銨副產物元素分析結果彙整表(EA)................................... 98
表4-32 回收硫酸銨副產品的分類指標….................................................... 98
表4-33 本法與傳統法之優缺點比較…….................................................... 99
表A-1 離子層析儀之SO42-、NH4+品保品管查核表…................................ 116
表A-2 離子層析儀之SO42-、NH4+穩定性分析結果.................................... 117
表A-3 元素分析儀之精密度及穩定度......................................................... 117
表A-4 EA標準品之元素對照表.................................................................... 117
表A-5 非分散型紅外氣體分析儀出廠檢查成績書..................................... 118
表C-1 15% CO2吸收效率之原始數據........................................................... 124
表C-2 SO42-去除效率之原始數據.................................................................. 124
表C-3 鉛膏脫硫效率之原始數據.................................................................. 125




圖 目 錄 頁次
圖1-1 本研究流程圖...................................................................................... 5
圖2-1 鉛蓄電池放電示意圖…………………………………….................. 12
圖2-2 台灣廢鉛蓄電池年回收量..……………............................................ 16
圖2-3 台灣廢鉛蓄電池年回收率…….......................................................... 16
圖2-4 物質在氣液界面間之濃度分佈圖...................................................... 38
圖2-5 pH值對溶液中碳酸系統解離物種之分配圖..................................... 40
圖3-1 本研究實驗流程圖.............................................................................. 44
圖3-2 元素分析儀(EA)................................................................................. 45
圖3-3 離子層析儀(IC).................................................................................. 46
圖3-4 非分散型紅外氣體分析儀(NDIR)..................................................... 47
圖3-5 酸鹼度測定計(pH meter)................................................................... 48
圖3-6 X-射線繞射分析儀(XRD)............................................................... 48
圖3-7 X-射線螢光分析儀(XRF)………..................................................... 49
圖3-8 瓶杯試驗組.......................................................................................... 52
圖3-9 抽氣過濾裝置...................................................................................... 52
圖3-10 氨水吸收99.9%二氧化碳實驗裝置圖............................................. 53
圖3-11 氨水吸收模擬煙道廢氣二氧化碳實驗裝置圖................................ 54
圖4-1 鉛泥表面單點分析之EDS圖............................................................ 57
圖4-2 鉛砂表面單點分析之EDS圖.............................................................. 57
圖4-3 鉛泥表面區域分析之EDS圖............................................................ 57
圖4-4 鉛砂表面區域分析之EDS圖............................................................. 57
圖4-5 反應前鉛泥樣品之XRD分析頻譜圖................................................ 58
圖4-6 反應前鉛砂樣品之XRD分析頻譜圖................................................ 58
圖4-7 不同碳酸氫銨添加量對於鉛泥及鉛砂脫硫效率之影響.................. 61
圖4-8 不同反應時間對於鉛泥及鉛砂脫硫效率之影響.............................. 62
圖4-9 不同攪拌轉速對於鉛泥及鉛砂脫硫效率之影響.............................. 63
圖4-10 碳酸氫銨與碳酸鈉添加量對於鉛泥脫硫效率之影響.................... 65
圖4-11 碳酸氫銨與碳酸鈉添加量對於鉛砂脫硫效率之影響.................... 66
圖4-12 不同反應時間對於鉛泥脫硫效率之影響........................................ 67
圖4-13 不同反應時間對於鉛砂脫硫效率之影響........................................ 67
圖4-14 不同氨水濃度對於鉛泥及鉛砂脫硫效率之影響............................ 69
圖4-15 二氧化碳進氣流率對於鉛泥及鉛砂脫硫效率之影響…................ 71
圖4-16 二氧化碳吸收時間對於鉛泥及鉛砂脫硫效率之影響.................... 72
圖4-17 不同反應時間對於鉛泥及鉛砂脫硫效率之影響............................ 74
圖4-18氨水吸收二氧化碳之產物晶體…...................................................... 75
圖4-19碳酸氫銨與產物晶體之XRD圖譜................................................... 76
圖4-20 0.5%氨水在不同反應時間之pH值................................................... 78
圖4-21 1%氨水在不同反應時間之pH值...................................................... 78
圖4-22 2%氨水在不同反應時間之pH值...................................................... 78
圖4-23 5%氨水在不同反應時間之pH值...................................................... 79
圖4-24 10%氨水在不同反應時間之pH值.................................................... 79
圖4-25 12%氨水在不同反應時間之pH值.................................................... 79
圖4-26 15%氨水在不同反應時間之pH值.................................................... 80
圖4-27 18%氨水在不同反應時間之pH值.................................................... 80
圖4-28 氨水濃度對二氧化碳吸收效率之影響............................................ 81
圖4-29 進氣流率對二氧化碳吸收效率之影響............................................ 83
圖4-30 吸收時間對二氧化碳吸收效率之影響............................................ 84
圖4-31 不同氨水濃度對於鉛泥及鉛砂脫硫效率之影響............................ 86
圖4-32 二氧化碳進氣流率對於鉛泥及鉛砂脫硫效率之影響.................... 88
圖4-33 二氧化碳吸收時間對於鉛泥及鉛砂脫硫效率之影響.................... 89
圖4-34 氫氧化鈣添加量對SO42-去除效率之影響....................................... 91
圖4-35 攪拌轉速對SO42-去除效率之影響................................................... 91
圖4-36 反應時間對SO42-去除效率之影響................................................... 92
圖4-37 硫酸銨濾液與氫氧化鈣反應後之濾渣............................................ 93
圖4-38氫氧化鈣的XRD圖譜....................................................................... 93
圖4-39硫酸銨濾液與氫氧化鈣反應產物的XRD圖譜............................... 94
圖4-40 還原過程中的ΔG-T關係圖.............................................................. 95
圖4-41 鉛膏還原生成之氧化鉛圖……........................................................ 96
圖4-42 鉛膏與碳粉反應生成之鉛錠圖........................................................ 96
圖4-43 硫酸銨濾液蒸發結晶圖………........................................................ 97
圖4-44 硫酸銨濾液結晶體之XRD圖譜....................................................... 98
圖B-1 SO42-離子檢量線………...................................................................... 121
圖B-2 NH4+離子檢量線………...................................................................... 121
圖B-3 CO2氣體檢量線……………………………………………………... 122
參考文獻 References
參考文獻
Ahmed, F., “The battery recycling loop: a European perspective,” Journal of Power Sources, 59(1-2), 107-111, 1996.
Amorelli, A., Wilkinson, M.B., Bedont, P., Capobianco, P., Marcenaro, B., Parodi, F. and Torazza, A., “An experimental investigation into the use of molten carbonate fuel cells to capture CO2 from gas turbine exhaust gases,” Energy, 29(9-10), 1279-1284, 2004.
Andrews, D., Raychaudhuri, A. and Frias, C., “Environmentally sound technologies for recycling secondary lead,” Journal of Power Sources, 88, 124-129, 2000.
Archana, A., Kamala, K.S. and Banshi, D.P., “Recent trends and current practices for secondary processing of zinc and lead, Part 1: lead recovery from secondary sources,” Waste Management & Research, 22(4), 240-247, 2004.
Aroua, M.K., Haji-Sulaiman, M.Z. and Ramasamy, K., “Modelling of carbon dioxide absorption in aqueous solutions of AMP and MDEA and their blends using Aspenplus,” Separation and Purification Technology, 29(2), 153-162, 2002.
Bai, H. and Yeh, A.C., “Removal of CO2 greenhouse gas by ammonia scrubbing,” Industrial & Engineering Chemistry Research, 36, 2490-2493, 1997.
Bai, H. and Yeh, A.C., “Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions,” Science of the Total Environment, 228, 121-133, 1999.
Castellino, N., Castellino, P. and Sannolo, N., “Inorganic Lead Exposure: Metabolism and Intoxication,” CRC Press, Inc., 1995.
Chakma, A., “An energy efficient mixed solvent for the separation of CO2,” Energy Conversion and Management, 36(6-9), 427-430, 1995.
Chen, T.T. and Dutrizac, J.E., “The mineralogical characterization of battery paste,” Hydrometallurgy, 40, 223-245, 1996.
Chue, K.T., Kim, J.N., Yoo, Y.J., Cho, S.H. and Park, K.S., “A parametric study of pressure swing adsorption for the recovery of carbon dioxide from flue gas,” Fundamentals of Adsorption, 356, 203-210, 1996.
Cole, Jr., E.R., Lee, A.Y. and Paulson, D.L., “Electrowinning of lead from H2SiF6 solution,” US4272340, 1981.
Cole, Jr., E.R., Lee, A.Y. and Paulson, D.L., “Update on recovering lead from scrap battery,” Journal of Metals, 37(2), 79-83, 1985.
Cosmo, S., “COBAT: collection and recycling spent lead/acid batteries in Italy,” Journal of Power Sources, 57, 75-80, 1995.
Daniel, E.S., Pappis, P.C. and Voutsinas, T.G., “Applying life cycle inventory to reverse supply chains: a case study of lead recovery from batteries,” Resources, Conservation and Recycling, 37(4), 251-281, 2003.
Descampa, C., Bouallou, C. and Kanniche, M., “Efficiency of an integrated gasification combined cycle (IGCC) power plant including CO2 removal,” Energy, 33(6), 874-881, 2008.
Diao, Y.F., Zheng, X.Y., He, B.S., Chen, C.H. and Xu, X.C., “Experimental study on capuring CO2 greenhouse gas by ammonia scrubbing,” Energy Conversion and Management, 45(13-14), 2283-2296, 2004.
Ferracin, L.C., Chacon-Sanhueza, A.E., Davoglio, R.A., Rocha, L.O., Caffcu, D.J., Fontanctti, A.R., Rocha-Filho, R.C. Biaggio, S.R. and Bocchi, N., “Lead recovery from a typical Brazilian sludge of exhausted lead-acid batteries using an electro hydrometallurgical process,” Hydrometallurgy, 65, 137-144, 2002.
Ginatta, M.V., “Method for the electrolytic production of lead,” US4451340, 1984.
Gong, Y.W., Wang, Z. and Wang, S.C., “Experiments and simulation of CO2 removal by mixed amines in a hollow fiber membrane module,” Chemical Engineering and Processing, 45, 652-660, 2006.
Gustavo, Diza, B.S. and David Andrews, “Placid-a clean process for recycling lead from batteries,” JOM, 29-31, 1996.
Hostynek, J.J., Hinz, R.S., Lorence, C.R., Price, M. and Guy, R.H., “Metals and the skin,” Crit Rev Toxicol, 23(2), 171-235, 1993.
Hou, H.F., “Recovery of valuable metals from waste lead acid accumulator,” Shanghai Nonferrous Metals, 22(4), 181-186, 2001.
Hsu, C.H., Chu, H. and Cho, C.M., “Absorption and reaction kinetics of amines and ammonia solutions with carbon dioxide in flue gas,” Journal of Air & Waste Management Association, 53(2), 246-252, 2003.
Huseni, A.R., “Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors,” Journal of Membrane Science, 112(2), 229-240, 1996.
James, T.Y. and Henry, W.P., “Study of CO2 absorption and desorption in a packed column,” Energy & Fuels, 15(2), 274-278, 2001.
Jan, W., Klaas, de, H., Wobby, B. and Henk, D., “Biological conversion of anglesite (PbSO4) and lead waste from spent car battery to galena (PbS),” Biotechnology Progress, 18(4), 770-775, 2002.
Kaya, Y., “The role of CO2 removal and disposal,” Energy Conversion and Management, 36(6-9), 375-380, 1995.
Kreusch, M.A., Ponte, M.J.J.S., Ponte, H.A., Kaminari, C.E.B. and Mymrin, V., “Technological improvements in automotive battery recycling,” Resources Conservation & Recycling, 52(2), 368-380, 2007.
Kumar, P.S., “Development and design of membrane gas absorption processes,” University of Twente, 23-39, 2002.
Li, J.L. and Chen, B.H., “Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors,” Separation and Purification Technology, 41(2), 109-122, 2005.
Li, X.N., Hagaman, E., Tsouris, C. and Lee, J.W., “Removal of carbon dioxide from flue gas by ammonia carbonation in the gas phase,” Energy & Fuels, 17(1), 69-74, 2003.
Lin, C.C., Liu, W.T. and Tan, C.S., “Removal of carbon dioxide by absorption in a rotating packed bed,” Industrial & Engineering Chemistry Research, 42(11), 2381-2386, 2003.
Liu, J.Z., Wang, S.J., Zhao, B., Tong, H.L. and Chen, C.H., “Absorption of carbon dioxide in aqueous ammonia,” Energy Procedia, 1(1), 933-940, 2009.
Liu, H., Yin, X.Y., Qin, W.Q., Sun, W. and Liu, X.X., “Conversion of pastes in exhausted lead storage batteries into lead carbonate in sodium carbonate solution,” Hydrometallurgy of China, 24(3), 146-149, 2005.
Lyakov, N.K., Atanasova, D.A. and Vassilev, V.S., “Desulphurization of damped battery paste by sodium carbonate and sodium hydroxide,” Journal of Power Sources, 171(2), 960-965, 2007.
Mandal, B. and Bandyopadhyay, S., “Simultaneous absorption of CO2 and H2S into aqueous blends of N-Methyldiethanolamine and diethanolamine,” Environmental Science & Technology, 40(19), 6076-6084, 2006.
McDonald, H.D., “Method of Recovering Lead Values from Battery Sludge,” US4229271, 1980.
Meisen, A. and Shuai, X.S., “Research and development issues in CO2 capture,” Energy Conversion and Management, 38, s37-s42, 1997.
Niu, Z.Q., Guo, Y.C. and Lin, W.Y., “Experimental studies on removal of carbon dioxide by aqueous ammonia fine spray,” Science China Technology Sciences, 53, 117-122, 2010.
Olper, M. and Fracchla, P., “Hydrometallurgical process for an overall recovery of the components of exhausted load-acid battery,” US4769116, 1988.
Olper, M., Maccagni, M., Buisman, C.J.N. and Schultz, C.E., “Electrowinning of lead battery paste with the production of lead and elemental sulphur using bioprocess technologies,” Minerals Metals & Materials Society, 803-813, 2000.
Paff, S.W. and Bosilovich, B.E., “Use of lead reclamation in secondary lead smelters for the remediation of lead contaminated sites,” Journal of Hazardous Materials, 40(2), 139-164, 1995.
Prengaman, P.D., “Recovering lead from batteries,” Journal of Metals, 47(1), 31-33, 1995.
Sada, E., Kumazawa, H., Han, Z.Q. and Matsuyama, H., “Chemical kinetics of the reaction of carbon dioxide with ethanolamines in nonaqueous solvents,” AIChE Journal, 31(8), 1297-1303,1985.
Shen, J.F., Yang, Y.M. and Maa, J.R., “Promotion mechanism for CO2 absorption into partially carbonated ammonia solutions,” Journal of Chemical Engineering of Japan, 32(3), 378-381, 1999.
Sten, Karlsson, “Closing the technospHeric flow of toxic metals, Modeling lead losses from a lead-acid battery system for Sweden,” Journal of Industrial Ecology, 3(1), 23-40, 1999.
Sugiura, K., Takei, K., Tanimoto, K. and Miyazaki, Y., “The carbon dioxide concentrator by using MCFC,” Journal of Power Sources, 118(1-2), 218-227, 2003.
Tan, C.S. and Chen, J.E., “Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed,” Separation and Purification Technology, 49(2), 174-180, 2006.
Teramoto, M., Nakatani, R., Huang, Q. and Watari, T., “Facilitated transport of CO2 through supported liquid membranes of various amine solutions-effects of rate and equilibrium of reaction between CO2 and amine,” Journal of Chemical Engineering of Japan, 30, 328-335, 1997.
Timothy, W., Abbas, H. and Ellis, M., “The refining of secondary lead for use in advanced lead-acid batteries,” Journal of Power Sources, 195, 4525-4529, 2010.
Vaysgant, Z., Morachevsky, A., Demidov, A. and Klebanov, E., “A low-temperature technique for recycling lead/acid battery scrap without wastes and with improved environmental control,” Journal of Power Sources, 53(2), 303-306, 1995.
Versteeg, G.F. and Swaaij van, W.P.M., “On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions-Ⅰ. Primary and secondary amines,” Chemical Engineering Science, 43(3), 573-585, 1988.
Versteeg, G.F. and Swaaij van, W.P.M., “On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions-Ⅱ. Tertiary amines,” Chemical Engineering Science, 43(3), 587-591, 1988.
Winnick, J., Toghiani, H. and Quattrone, P.D., “Carbon dioxide concentration for manned spacecraft using a molten carbonate electrochemical cell,” AIChE Journal, 28(1), 103-111, 1982.
Yeh, J.T., Resnik, K.P., Rygle, K. and Pennline, H.W., “Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia,” Fuel Processing Technology, 86(14-15), 1533-1546, 2005.
Zhu, X.F., Li, L., Sun, X.J., Yang, D.N., Gao, L.X., Liu, J.W., Vasant, Kumar, R. and Yang, J.K., “Preparation of basic lead oxide from spent lead acid battery paste via chemical conversion,” Hydrometallurgy, 117-118, 24-31, 2012.
Zhu, X.F., Yang, J.K., Gao, L.X., Yang, D.N., Sun, X.J., Zhang, W., Wang, Q., Li, L., He, D.S. and Vasant, Kumar, R., “Preparation of lead carbonate from spent lead paste via chemical conversion,” Hydrometallurgy, 134-135, 47-53, 2013.
欽淑均、鄭志勝、張成芳、沈小耀,“純氨水吸收二氧化碳的速率研究”,華東化工學院學報,2,155-167,1983。
樂頌光,“再生有色金屬生產”,中南工業大學出版社,1991。
陳維平,“從廢鉛蓄電池中濕法回收鉛技術的述評”,中國物資再生,9,6-8,1994。
陳維平、龔建森、黎七中,“Fe2+還原廢蓄電池泥渣中PbO2的試驗研究”,湖南大學學報,22(6),53-58,1995。
陳維平,“一種濕法回收廢鉛蓄電池填料的新技術”,湖南大學學報,23(6),111-115,1996。
李松瑞,“鉛及鉛合金”,長沙:中南工業大學出版社,1996。
徐品弟、柳厚田,“鉛酸蓄電池-基礎理論和工藝原理”,上海:上海科學技術文獻出版社,1996。
任旭紅,“鉛污染及其危害”,中國公共衛生,15(9),893-894,1999。
魏翠英,“鉛污染與人體健康”,生物學通報,34(3),24,1999。
陳重修,“二氧化碳與二氧化硫整合性控制技術之研究”,國立台灣大學環境工程所碩士論文,2000。
侯惠芬,“從廢鉛蓄電池中回收有價金屬”,上海有色金屬,22(4),181-186,2001。
魏東、馬一太、呂燦仁,“溫室氣體減排的靈活性機制與未來展望”,電力環境保護,2(17),55-58,2001。
和曉才,“廢鉛蓄電池的處理”,雲南冶金,31(2),38-40,2002。
李文峰,“以MEA溶液去除煙道氣中二氧化碳之研究”,國立成功大學碩士論文,2002。
鐘戰鐵,“有機胺溶液吸收二氧化碳基礎研究”,浙江大學碩士論文,2002。
周正華,“從廢舊蓄電池中無污染火法冶煉再生鉛及合金”,上海有色金屬,23,157-163,2002。
鄭顯玉,“氨法回收電廠煙氣中二氧化硫及二氧化碳的試驗研究”,清華大學碩士論文,2002。
朱松然,“鉛蓄電池技術(第2版)”,北京:機械工業出版社,2002。
毛玉如,“循環流化床富氧燃燒技術的試驗和理論研究”,浙江大學博士論文,2003。
宋劍飛、李丹、陳昭宜,“廢鉛蓄電池的處理及資源化-黃丹紅丹生產新工藝”,環境工程,21(5),48-50,2003。
許家豪,“以化學吸收法處理煙道氣二氧化碳之研究”,國立成功大學博士論文,2003。
周國寶,“關於鉛鋅工業發展的思考”,有色金屬工業,9,11-13,2003。
陳國友,“鉛冶金學”,北京:冶金工業出版社,2004。
佟永頗、王慧釧,“廢鉛蓄電池回收鉛技術”,CN1470675A,2004。
戴自希,“世界鉛鋅資源的分佈、類型和勘查準則”,世界有色金屬,15-23,2005。
費維揚、艾寧、陳健,“溫室氣體CO2的捕集和分離-分離技術面臨的挑戰與機遇”,化工進展,24(1),1-4,2005。
陸克源,“固相電解法-一種再生鉛的新技術”,有色金屬再生及利用,12,16-17,2005。
郭翠香、趙由才,“從廢鉛蓄電池中濕法回收鉛的技術進展”,東莞理工學院學報,2(1),81-86,2006。
楊忠興,“鉛蓄電池工廠員工鉛暴露及健康危害管理之研究”,佛光人文社會學院管理學研究所碩士在職專班碩士論文,2006。
張順應,“採用水口山煉鉛法處理廢鉛蓄電池生產再生鉛工藝初探”,有色金屬再生與利用,11,21-23,2006。
傅欣、貢佩芸、傅毅誠,“廢鉛蓄電池的綜合回收利用研究”,再生資源研究,4,25-27,2007。
張茂,“氨法脫除燃煤煙氣中二氧化碳的實驗研究”,哈爾濱工業大學能源科學與工程學院碩士論文,2007。
桂雙林,“廢鉛蓄電池中鉛泥浸出特性及氯鹽法浸出條件研究”,南昌大學環境科學與工程學院碩士論文,2008。
林良專,“以氨水捕捉二氧化碳之吸收與資源再利用研究-以攪拌槽吸收器探討吸收與結晶現象”,龍華科技大學碩士論文,2008。
馬旭,“從蓄電池中回收鉛的技術進展”,河南科技大學材料科學與工程學院月刊,2008。
張琳,“中國再生鉛產業格局生變”,資源再生,2(2),9-15,2008。
馮飛、公冶令沛、魏龍、張蕾,“化學鏈燃燒在二氧化碳減排中的應用及其研究進展”,化工時刊,23(4),67-71,2009。
令狐瓦奇、李民強,“NHD脫碳應用小結”,中氮肥,2,28-29,2009。
劉芳,“再生氨法脫除燃煤電廠煙氣中二氧化碳的實驗研究”,清華大學博士論文,2009。
馬雙忱、孫雲雪、馬京香、蘇敏、金鑫,“電廠煙氣中二氧化碳的捕集技術”,電力環境保護,25(6),58-62,2009。
任平、韋大文,“中醫藥治療鉛中毒的文獻研究分析”,河南中醫學院學報,24(2),82-85,2009。
奚甡,“世界鉛鋅資源開發現狀及其利用”,中國金屬通報,37,32-33,2009。
楊家寬、朱新鋒、劉萬超、楊海玉、肖波,“廢鉛蓄電池鉛膏回收技術的研究進展”,現代化工,29(3),32-37,2009。
郭慶杰,“溫室氣體二氧化碳捕集和利用技術進展”,北京:化學工業出版社,2010。
陸詩建,“醇胺溶液捕集煙道氣中CO2實驗研究”,中國石油大學碩士論文,2010。
王玉,“廢鉛蓄電池鉛膏濕法回收制取鉛品新工藝研究”,合肥工業大學碩士論文,2010。
高涵,“有機胺法吸收二氧化碳及其性能研究”,上海師範大學生命與環境科學學院碩士論文,2011。
桂霞、湯志剛、費維揚,“高壓下CO2在幾種物理吸收劑中的溶解度測定”,化學工程,6(31),55-58,2011。
林德強,“廢鉛蓄電池及鉛陽極泥回收利用新工藝的研究”,中南大學碩士論文,2011。
馬雙忱、孫雲雪、崔基偉、趙毅,“聚乙二醇二甲醚抑制脫碳吸收劑中氨逃逸的實驗及原理分析”,化工學報,62 (5),1408-1413,2011。
謝偉,“廢鉛酸蓄電池鉛膏碳酸鹽化轉化脫硫及還原過程研究”,安徽工業大學碩士論文,2011。
肖珍平、房鼎業、應衛勇、劉森、陳健,“低溫甲醇脫碳工藝熱力學模型和過程模擬研究”,化學工程,39 (7),74-77,2011。
袁中新,“廢鉛蓄電池回收業鉛膏除硫技術之研發”,期末報告,2011。
袁中新,“廢鉛蓄電池回收鉛砂及鉛泥除硫技術之研發(Ⅱ)”,技術報告,2011。
曾慶,“氨法吸收二氧化碳的實驗研究”,清華大學碩士論文,2011。
張信,“低溫甲醇洗淨化工藝模擬與改造研究”,大氮肥,34(4),221-224,2011。
郭慶偉,“氨法脫除燃煤鍋爐煙道氣中CO2及咪唑類離子液體萃取分離鈰的研究”,山東大學碩士論文,2012。
王川,“氨法電廠煙氣二氧化碳吸收工藝的模擬與實驗研究”,北京化工大學碩士論文,2012。
王洪波,“有機胺法吸收二氧化碳的研究”,上海師範大學生命與環境科學學院碩士論文,2012。
朱新鋒,“廢鉛膏有機酸浸出及低溫焙燒製備超細鉛粉的基礎研究”,華中科技大學博士論文,2012。
廢鉛蓄電池專題報導,行政院環境保護署資源回收電子報,2013。
馬茁卉,“我國鉛資源供需形勢及保證程度研究”,中國礦業,22,12-16,2013。
張哲,“吸收法和吸附法聯合脫除模擬煙氣中二氧化碳氣體的研究”,武漢工程大學碩士論文,2013。
張軍力、秦雷、秦春陽,“鉛蓄電池回收工藝及含鉛廢水處理技術的研究進展”,現代礦業,531,2013。
袁中新,“以碳酸氫銨溶液處理廢鉛蓄電池回收業硫酸鉛膏之再利用技術研發”,行政院環境保護署期末報告,2013。
陳健、羅偉亮、李晗,“有機胺吸收二氧化碳的熱力學和動力學研究進展”,化工學報,65(1),12-21,2014。
郭光輝、劉芳芳、陳珊、張利玉、邱德芬,“NH4HCO3+NH3•H2O處理廢鉛酸電池鉛膏實驗研究”,無機鹽工業,46(2),57-60,2014。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code