Responsive image
博碩士論文 etd-0715117-084334 詳細資訊
Title page for etd-0715117-084334
論文名稱
Title
探討Pentabromophenol抑制TGF-β訊息傳遞影響之機制
Study the mechanisms of Pentabromophenol in the modulation of TGF-β signaling.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-28
繳交日期
Date of Submission
2017-08-15
關鍵字
Keywords
溴化阻燃劑、PBP、TGF-β、Smad、EMT
BFR, EMT, Smad, TGF-β, PBP
統計
Statistics
本論文已被瀏覽 5685 次,被下載 15
The thesis/dissertation has been browsed 5685 times, has been downloaded 15 times.
中文摘要
Pentabromophenol (PBP)為溴化阻燃劑 (brominated flame retardants, BFRs)中常見的一種工業化合物,根據先前研究指出BFRs可能對人體與其他動物體具影響內分泌等危害。在此篇研究中我們發現PBP可以加速轉型生長因子-β (transforming growth factor-beta, TGF-β)受器在細胞膜內外的分布與降解,並藉此減弱細胞對TGF-β的反應。PBP可以抑制TGF-β所誘導發生的PAI-1報導基因活化與、Smad2/3的磷酸化與細胞移動,在A549 cells中也發現當TGF-β影響下游E-cadherin表現量減少與vimentin表現量增加的現象被抑制後,細胞受TGF-β刺激導致EMT發生的情況也會受到抑制。TGF-β能夠調節許多細胞反應,且與癌症發展的過程有關,在癌症晚期可促進癌細胞的增殖與轉移。在in vitro的實驗中發現PBP與TGF-β訊息傳遞路徑有關,而PBP為溴化阻燃劑其中的化合物,與polybrominated diphenyl ethers (PBDEs)的化合物也有相似的結構。因此,有鑑於TGF-β與許多人類疾病發展的關連性,日後也將深入探討PBP與溴化阻燃劑影響TGF-β訊息傳遞更精確的作用機制。
Abstract
Pentabromophenol (PBP), a brominated flame retardant (BFR), is widely used in various consumer products. BFRs exert adverse health effects such as neurotoxic and endocrine-disrupting effects. In this study, we found that PBP suppressed TGF-β responsiveness by accelerating the turnover rate of TGF-β receptor. PBP suppressed TGF-β1-mediated cell migration, PAI-1 reporter gene activation and Smad2/3 activation in various type of cells, abolished TGF-β1-mediated repression of E-cadherin expression, as well as induction of vimentin expression along with Snail and Slug upregulation; thus, blocking the TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) in A549 calls. TGF-β superfamily is a key player in the regulation of a wide variety of biological processes from development to pathogenesis including cell proliferation, migration, and the process of cancer development and progression. The in vitro results in this study provide a basis for studies of more detailed relationships between PBP and the modulation of TGF-β signaling. Because PBP is similar to other BFRs such as polybrominated diphenyl ethers (PBDEs), additional laboratory and mechanistic studies should be performed to examine BFRs as potential risk factors for tumorigenesis and other TGF-β-related diseases.
目次 Table of Contents
論文審定書+i
致謝 +ii
中文摘要+iii
Abstract+iv
縮寫表+x
前言 +1
實驗材料與方法+7
一、 細胞株+7
二、 細胞培養 (Cell Culture)+7
三、 質體備製 (Plasmids)+8
四、 真核細胞轉染 (Transfection)+9
五、 螢光素酶冷光活性分析 (Luciferase Activity Assay)+9
六、 西方墨點法 (Western Blotting)+10
七、 免疫螢光染色法 (Immunofluorescence)+11
八、 傷口癒合實驗 (Wound Healing Assay)+12
九、 細胞膜表面受器胞吞試驗 (Endocytosis Assay)+12
十、 RNA抽取 (RNA Isolation)與反轉錄PCR (Reverse Transcription-PCR, RT-PCR)+14
十一、 聚合酶連鎖反應 (Polymerase Chain Reaction, PCR)與洋菜膠電泳法 (Agarose gel Electrophoresis)+15
十二、 蔗糖濃度梯度離心 (Sucrose Gradient Centrifugation)+16
十三、 細胞存活率分析 (MTT Assay)+17
十四、 免疫沉澱 (Immunoprecipitation)+17
十五、 統計方法+18
結果+19
PBP抑制TGF-β所誘導Smad蛋白質磷酸化與下游相關promoter活性+19
PBP抑制TGF-β所誘導EMT反應發生+20
PBP抑制TGF-β所誘導的細胞移動+21
PBP加速TβRⅡ內化到細胞中並促其迅速被降解+22
PBP可增強藉caveolea所媒介之胞吞作用將TβRⅡ內化到細胞中並降解+23
PBP可以影響TβRⅡ在lipid raft與non-lipid raft的分布+25
討論 +53
參考文獻+56
附錄+62
參考文獻 References
1. J. Varga, & B. Pasche, Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol 5, 200-6 (2009).
2. R. Derynck, R. J. Akhurst, A. Balmain, TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29, 117-129 (2001).
3. C. H. Heldin, K. Miyazono, P. ten Dijke, TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471 (1997).
4. J. Massague, S. W. Blain, R. S. Lo, TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103, 295-309 (2000).
5. H. Ikushima1 & K. Miyazono, TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer 10, 415-424 (2010).
6. L. Yang, & H. L. Moses, Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 68, 9107-11 (2008).
7. B. Bierie, & H. L. Moses, Tumour microenvironment: TGF-beta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6, 506-20 (2006).
8. P. V. Angadi & A. D. Kale, Epithelial-mesenchymal transition - A fundamental mechanism in cancer progression: An overview. KLE Univ Health Sci J 8, 77-84 (2015).
9. A. Moustakas, C. H. Heldin, Non-Smad TGF-beta signals. J Cell Sci 118, 3573-3584 (2005).
10. R. A. Rahimi, E. B. Leof, TGF-beta signaling: a tale of two responses. J Cell Biochem 102, 593-608 (2007).
11. Y. E. Zhang, Non-Smad pathways in TGF-beta signaling. Cell Res 19, 128-139 (2009).
12. R. J. Akhurst & A. Hata, Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 11, 790-811 (2012).
13. M. B. Hovater, W. Z. Ying, A. Agarwal, P. W. Sanders, Nitric oxide and carbon monoxide antagonize TGF-beta through ligand-independent internalization of TbetaR1/ALK5. Am J Physiol Renal Physiol 307, F727-735 (2014).
14. F. Huang & Y. G. Chen, Regulation of TGF-β receptor activity. Cell Biosci 2, 9 (2012).
15. Q. Cai et al., Caveolar Fatty Acids and Acylation of Caveolin-1. PLoS ONE 8, 4 (2013).
16. R. Parton and K. Simons, The multiple faces of caveolae. Nat Rev Mol Cell Biol 8, 185-94 (2007).
17. C. L. Chen, S. S. Huang, J. S. Huang, Cellular heparan sulfate negatively modulates transforming growth factor-beta1 (TGF-beta1) responsiveness in epithelial cells. J Biol Chem 281, 11506-11514 (2006).
18. C. L. Chen, S. S. Huang, J. S. Huang, Cholesterol modulates cellular TGF-beta responsiveness by altering TGF-beta binding to TGF-beta receptors. J Cell Physiol 215, 223-233 (2008).
19. C. L. Chen et al., Cholesterol suppresses cellular TGF-beta responsiveness: implications in atherogenesis. J Cell Sci 120, 3509-3521 (2007).
20. G. M. Di Guglielmo, C. Le Roy, A. F. Goodfellow, J. L. Wrana, Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5, 410-421 (2003).
21. T. Ito, J. D. Williams, D. J. Fraser, A. O. Phillips, Hyaluronan regulates transforming growth factor-beta1 receptor compartmentalization. J Biol Chem 279, 25326-25332 (2004).
22. C. L. Chen et al., Euphol from Euphorbia tirucalli Negatively Modulates TGF-beta Responsiveness via TGF-beta Receptor Segregation inside Membrane Rafts. PLoS One 10, e0140249 (2015).
23. C. L. Chen et al., Betulinic acid enhances TGF-beta signaling by altering TGF-beta receptors partitioning between lipid-raft/caveolae and non-caveolae membrane microdomains in mink lung epithelial cells. J Biomed Sci 23, 30 (2016).
24. C. L. Chen et al., Inhibitors of clathrin-dependent endocytosis enhance TGF-beta signaling and responses. J Cell Sci 122, 1863-1871 (2009).
25. S. McLean, G. M. Di Guglielmo, TGF beta (transforming growth factor beta) receptor type III directs clathrin-mediated endocytosis of TGF beta receptor types I and II. Biochem J 429, 137-145 (2010).
26. S. K. Patra, Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta 1785, 182-206 (2008).
27. S. Mukherjee, M. Tessema, A. Wandinger-Ness, Vesicular trafficking of tyrosine kinase receptors and associated proteins in the regulation of signaling and vascular function. Circ Res 98, 743-756 (2006).
28. J. Barnett-Norris, D. Lynch, P. H. Reggio, Lipids, lipid rafts and caveolae: their importance for GPCR signaling and their centrality to the endocannabinoid system. Life Sci 77, 1625-1639 (2005).
29. P. O. Darnerud, Toxic effects of brominated flame retardants in man and in wildlife. Environ Int 29, 841-853 (2003).
30. C. Thomsen, V. H. Liane, G. Becher, Automated solid-phase extraction for the determination of polybrominated diphenyl ethers and polychlorinated biphenyls in serum--application on archived Norwegian samples from 1977 to 2003. J Chromatogr B Analyt Technol Biomed Life Sci 846, 2-263 (2007).
31. L. S. Birnbaum & D. F. Staskal, Brominated Flame Retardants: Cause for Concern? Environ Health Perspect 112, 9-17 (2004).
32. I. Watanabe & S. Sakai, Environmental release and behavior of brominated flame retardants. Environ Int 29, 665-682 (2003).
33. R. J. Law et al., Levels and trends of brominated flame retardants in the European environment. Chemosphere 64, 187-208 (2006).
34. M. Ghosh et al., Structure of human transthyretin complexed with bromophenols: a new mode of binding. Acta Crystallogr D Biol Crystallogr 56, 1085-1095 (2000).
35. I. A. Meerts et al., Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci 56, 95-104 (2000).
36. C. M. Olsen, E. T. Meussen-Elholm, J. A. Holme, J. K. Hongslo, Brominated phenols: characterization of estrogen-like activity in the human breast cancer cell-line MCF-7. Toxicol Lett 129, 55-63 (2002).
37. P. Eriksson, E. Jakobsson, A. Fredriksson, Brominated Flame Retardants: A Novel Class of Developmental Neurotoxicants in Our Environment? Environ Health Perspect 109, 903–908 (2001).
38. A. Twelvetrees (2013, September 10). Cell surface biotinylation experiments. FIGSHARE. Retrieved June 15, 2017, from https://figshare.com/articles/Cell_surface_biotinylation_experiments/816936
39. S. McLean & G. Guglielmo, TGFβ in Endosomal Signaling. Methods Enzymol 535, 39-54 (2014).
40. S. S. Huang, C. L. Chen, F. W. Huang, F. E. Johnson, J. S. Huang, Ethanol Enhances TGF-beta Activity by Recruiting TGF-beta Receptors From Intracellular Vesicles/Lipid Rafts/Caveolae to Non-Lipid Raft Microdomains. J Cell Biochem 117, 860-871 (2016).
41. R. A. Rahimi, E. B. Leof, TGF-beta signaling: a tale of two responses. J Cell Biochem 102, 593-608 (2007).
42. S. L. Cobbs, J. L. Gooch, NFATc is required for TGFbeta-mediated transcriptional regulation of fibronectin. Biochem Biophys Res Commun 362, 288-294 (2007).
43. C. Poncelet, M. P. de Caestecker, H. W. Schnaper, The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Kidney Int 56, 1354-1365 (1999).
44. R. L. Widom, I. Culic, J. Y. Lee, J. H. Korn, Cloning and characterization of hcKrox, a transcriptional regulator of extracellular matrix gene expression. Gene 198, 407-420 (1997).
45. M. Saitoh, Epithelial-mesenchymal transition is regulated at post-transcriptional levels by transforming growth factor-beta signaling during tumor progression. Cancer Sci 106, 481-488 (2015).
46. A. Gunaratne, E. Chan, T. H. El-Chabib, D. Carter, G. M. Di Guglielmo, aPKC alters the TGFbeta response in NSCLC cells through both Smad-dependent and Smad-independent pathways. J Cell Sci 128, 487-498 (2015).
47. Q. K. Huynh et al., Screening and identification of a novel class of TGF-beta type 1 receptor kinase inhibitor. J Biomol Screen 16, 724-733 (2011).
48. S. Lamouille, R. Derynck, Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol 178, 437-451 (2007).
49. V. Bakin, A. K. Tomlinson, N. A. Bhowmick, H. L. Moses, C. L. Arteaga, Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275, 36803-36810 (2000).
50. S. K. Halder, R. D. Beauchamp, P. K. Datta, A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia 7, 509-521 (2005).
51. B. Zhao et al., PICK1 promotes caveolin-dependent degradation of TGF-beta type I receptor. Cell Res 22, 1467-1478 (2012).
52. Y. G. Chen, Endocytic regulation of TGF-beta signaling. Cell Res 19, 58-70 (2009).
53. E. Willems et al., Small molecule-mediated TGF-beta type II receptor degradation promotes cardiomyogenesis in embryonic stem cells. Cell Stem Cell 11, 242-252 (2012).
54. M. Bauer, L. Pelkmans, A new paradigm for membrane-organizing and -shaping scaffolds. FEBS Lett 580, 5559-5564 (2006).
55. D. Volonte et al., Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo. Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. J Biol Chem 274, 12702-12709 (1999).
56. L. Birks et al., Occupational Exposure to Endocrine-Disrupting Chemicals and Birth Weight and Length of Gestation: A European Meta-Analysis. Environ Health Perspect 124, 1785–1793 (2016).
57. W. T. Parks et al., Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-beta family of receptor serine-threonine kinases. J Biol Chem 276, 19332-19339 (2001).
58. J. C. Zwaagstra, M. El-Alfy, M. D. O'Connor-McCourt, Transforming growth factor (TGF)-beta 1 internalization: modulation by ligand interaction with TGF-beta receptors types I and II and a mechanism that is distinct from clathrin-mediated endocytosis. J Biol Chem 276, 27237-27245 (2001).
59. S. Hayes, A. Chawla, S. Corvera, TGF beta receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol 158, 1239-1249 (2002).
60. S. S. Siddiqui, Z. K. Siddiqui, A. B. Malik, Albumin endocytosis in endothelial cells induces TGF-beta receptor II signaling. Am J Physiol Lung Cell Mol Physiol 286, L1016-1026 (2004).
61. E. Panopoulou et al., Early endosomal regulation of Smad-dependent signaling in endothelial cells. J Biol Chem 277, 18046-18052 (2002).
62. J. J. Dore, Jr. et al., Mechanisms of transforming growth factor-beta receptor endocytosis and intracellular sorting differ between fibroblasts and epithelial cells. Mol Biol Cell 12, 675-684 (2001).
63. E. Willems et al., Small molecule-mediated TGF-beta type II receptor degradation promotes cardiomyogenesis in embryonic stem cells. Cell Stem Cell 11, 242-252 (2012).
64. W. Meng et al., Downregulation of TGF-beta receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts. BMC Cancer 11, 88 (2011).
65. H. Fukasawa et al., Reduction of transforming growth factor-beta type II receptor is caused by the enhanced ubiquitin-dependent degradation in human renal cell carcinoma. Int J Cancer 127, 1517-1525 (2010).
66. S. Hong et al., Connection between inflammation and carcinogenesis in gastrointestinal tract: Focus on TGF-β signaling. World J Gastroenterol 16, 2080-2093 (2010).
67. A. C. Poncelet, M. P. de Caestecker, H. W. Schnaper, The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Kidney Int 56, 1354-1365 (1999).
68. S. L. Cobbs, J. L. Gooch, NFATc is required for TGFbeta-mediated transcriptional regulation of fibronectin. Biochem Biophys Res Commun 362, 288-294 (2007).
69. R. L. Widom, I. Culic, J. Y. Lee, J. H. Korn, Cloning and characterization of hcKrox, a transcriptional regulator of extracellular matrix gene expression. Gene 198, 407-420 (1997).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code