Responsive image
博碩士論文 etd-0715117-093212 詳細資訊
Title page for etd-0715117-093212
論文名稱
Title
噴霧冷卻熱傳之薄膜粗糙表面影響
Thin Film Roughened Surface Effect On Spray Cooling Heat Transfer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-26
繳交日期
Date of Submission
2017-08-15
關鍵字
Keywords
薄膜表面、粗糙度、壓電片、噴霧冷卻、沸騰曲線
Thin film surface, roughness, piezoelectric plate, spray cooling, boiling curves
統計
Statistics
本論文已被瀏覽 5732 次,被下載 118
The thesis/dissertation has been browsed 5732 times, has been downloaded 118 times.
中文摘要
本研究主要目的在探討使用不同材質的奈米等級厚度鍍膜表面,增強迷你型壓電片噴嘴的噴霧冷卻系統之冷卻性能。薄膜表面的奈米等級粗糙度將會增加反應面積並使核沸騰時產生核沸騰氣泡的成核點增加,藉此增強噴霧冷卻的沸騰熱傳。實驗中以銅為測試表面基底,在其表面鍍上不同之材質薄膜石墨烯(graphene)、多壁奈米碳管(MCNT)和類鑽石碳(DLC),並使用噴嘴孔徑35µm、質量流量 5.33×10^(-4) kg/s、噴霧高度50mm的多孔壓電霧化片噴嘴將工作流體DI water噴灑在加熱的測試表面上做噴霧冷卻實驗,並使用T-type熱電偶測量溫度,之後計算其測試表面溫度和熱傳量等相關參數,使用計算得到的相關參數繪製其沸騰曲線和淬火曲線,並分析薄膜粗糙表面對噴霧冷卻熱傳特性之影響。
Abstract
The objective of this study was to investigate the effect of coated thin films (several nanometers thick) made from different materials on enhancing the cooling performance of a spray cooling system that contained a spray nozzle with a mini piezoelectric piece. The roughness of the thin film surfaces increased the reaction areas as well as the number of nucleation sites (which formed bubbles during nucleate boiling), improving the boiling heat transfer performance of the spray cooling system. For the study experiment, copper was used as the base of the test surfaces, which were coated with thin films made from different materials (i.e., graphene, multiwall carbon nanotubes (MCNT), and diamond-like carbon (DLC). Next, a porous piezoelectric spray nozzle with an atomization piece, an aperture of 35µm, a mass flow rate of 5.33×10^(-4)kg/s, and a spray height of 50 mm was used to spray DI water as a working fluid on heated test surfaces, initiating the spray cooling experiment. A T-type thermocouple was used to measure the resulting temperatures, after which related parameters such as test surface temperatures and heat transfer amounts were calculated. The related parameters were used to generate boiling and quench curves to analyze the effect of thin film surface roughness on the ability of spray cooling to improve heat transfer properties.
目次 Table of Contents
CONTENTS
Page
誌謝................................................................................................................i
中文摘要………………………………………………………………...........…...ii
ABSTRACT...…………………………………………………………….............iii
CONTETS..………………………………………………………………............iv
LIST OF TABLES…..………………………………………………….........…...v
LIST OF FIGURES…..…………………………………………….........……...vii
NOMENCLATURE……………………………………………………..........…..x

CHAPTER 1 INTRODUCTION..……………………………………….......….1
1-1 Indroduction..……………………………………………………...............1
1-2 Background…………………………………………………..............…...2
1-3 Literature review…………………………………………..…............…...5
1-4 Research Objective….……………………………………….............…22
CHAPTER 2EXPERIMENT SYSTEM AND EQUIPMENT………….........23
2-1 Piezoelectric atomization..……………………………………..............23
2-2 Heating test device.…………………………………………….............23
2-3 Temperature measurement recording instrnments.………....……....24
2-4 AC power control system...…………………………………........…....24
2-5 Tool microscope.……………………………………………….............25
2-6 SEM……………………………………………………………..............25
2-7 AFM……………………………………………………...……...............26
CHAPTER 3EXPERIMENTAL METHODSAND PROCEDURES.……..32
3-1 Test surfacepreparation………………………………………............32
3-2 Experimental method..………………………………..……….............33
3-3 Aataanlysis…………...………………………………………...............34
CHAPTER 4 THEORETICAL ANALTSIS…………………………...…....40
4-1 The definition of Weber number(We)………………………..............40
4-2 The definition of Sauter mean diameter (SMD,d32)…………..........40
4-3 The definition of Reynolds number (Re)…………………….............41
4-4 Calculation of Heat flux (q") ……………………………….................42
4-5 Calculation of the surface temperature (TW)………………............ 43
4-6 Calculation of the heat transfer coefficient (HTC,h)………..............43
CHAPTER 5 UNCERTAINITY ANALYSIS………………………….........44
CHAPTER 6 RESULTSAND DISCUSSIONS………………………..…..49
6-1 Quench………………………………………………………................49
6-1-1 Quench curve of smooth copper surface…………………............49
6-1-2 Quench curve of nanotextured surface…………………...............50
6-1-3 h-t curve of smooth copper surface and nanotexured surface….55
6-2 Boiling curve………………………………………………………........55
6-2-1 Steady-state boiling curve……………………………………....…..55
6-2-2 HTC vs.ΔT curve……………………………………………......…...57
6-3 q"-h correlation of graphene surface……………………………..….58
6-4 Steady state and transient boiling curve………………………….....58
6-5 Nanotextured surface heat transfer effect enhancement……….....59
CHAPTER7CONCLUSION AND RECOMMENDATIONS………….....84
7-1 Conclusion……………………………………………………….........84
7-2 Recommendations and suggestions………………………………..85
REFERENCE………………………………………………………..….....86
APPENDIX A…………………………………………………………........91

LIST OF TABLES
Table 2-1 Parameters of nozzle….………………………………………..27
Table 3-1 Relevant parameters of typical nano-texted surface for three different materials...…35
Table3-2 Deionized water properties(DI water @ 25oC, 1 atm)……….....36
Table 3-3 Experimental parameters and variables of the study.…………..37
Table 5-1Measurement uncertainty for relevant parameters..…………….48
Table 6-1 Boiling curve parameter for smooth and nano-texted surface…61

LIST OF FIGURES
Fig.2-1 (a) PZT ultrasonic nozzle plate (b)SEMimage of PZT nozzle…...28
Fig.2-2 Heater……………………………………………………………........29
Fig.2-3 (a) NI9213 (b) Power supply(c)Tool microscope………………....30
Fig.2-4 (a) SEM (b) AFM………………………………………………......…31
Fig. 3-1 AFM image for four different surfaces with the associated morphology (a) polished copper (b) DLC (c)MCNT (d)graphene…..38
Fig.3-2Schematic of the experimental flow loop……………………...……39
Fig. 6-1 Quench curve of polished copper……………………………..…..62
Fig. 6-2 Quench curve of polished copper 0~450s………………………..63
Fig. 6-3 Quench curve of DLC surface (700 nm, 1000 nm)……………...64
Fig. 6-4 (a) Quench curve of DLC 700nm surface 0~200s (b) Quench curve of DLC 1000nm surface 0~450s………...65
Fig. 6-5 Quench curve of MCNT surface (50 nm, 100 nm,150 nm)……...66
Fig. 6-6 (a) Quench curve of MCNT 50 nm surface 0~300s (b) Quench curve of MCNT 100 nm surface 0~300s (c) Quench curve of MCNT 150 nm surface0~300s……………67
Fig. 6-7 Quench curve ofgraphene surface (1 nm, 2 nm,5 nm,10 nm)…...68
Fig. 6-8 (a) Quench curve ofgraphene 1 nm surface 0~150s (b) Quench curve ofofgraphene 2 nm surface 0~150s (c) Quench curve of ofgraphene 5 nm surface 0~250s (d) Quench curve of ofgraphene 10 nm surface 0~250s…………...69
Fig. 6-9 Transient h-t curve (a) polished copper (b) DLC………………...70
Fig. 6-10 Transient h-t curve (a) MCNT (b)graphene…………………….71
Fig. 6-11 Steady boiling curve of polished copper………………………..72
Fig. 6-12 Steady boiling curve (a) DLC (b)MCNT…………………….…73
Fig. 6-13 Steady boiling curve (a) graphene (b)all……………………….74
Fig. 6-14 HTC vs.ΔT curve (a) polished copper (b) DLC…..…………...75
Fig. 6-15 HTC vs.ΔT curve (a) MCNT (b) graphene……………………76
Fig. 6-16 h-q"correlation for graphene…………………………………...77
Fig. 6-17 Steady and transient boiling curve (a) polished copper (b)
DLC....................................................................................................78
Fig. 6-18Steady and transient boiling curve (a) MCNT (b) graphene……79
Fig. 6-19Steady and transient h-ΔT distribution (a) polished copper (b) DLC………………………………………………………………….80
Fig. 6-20Steady and transient h-ΔT distribution (a) MCNT (b) graphene……………………………………………………………..81
Fig. 6-21 havg/hs,avg-hCHF/hs,CHF for different nanotextured surfaces……....82
Fig.6-22 Contact angle (a) polished copper (b) DLC 700 nm (c) DLC 1000 nm (d) MCNT 50 nm (e) MCNT 100 nm (f) MCNT 150 nm (g) graphene 1 nm (h) graphene 2 nm (i) graphene 5 nm (j) graphene 10 nm……………………………………………………………………83
參考文獻 References
REFERENCES

[1] R.R.Perron, 'The Design and Application of a Reliable Ultrasonic Atomizer', Sonics and Ultrasonics, IEEE Transactions on, 1967, Vol. 14 pp. 149-152.
[2] D.E.Tilton, M.R. Paris, and L.C. Chow, ' High Power Density Spray Cooling', Technical Report, 1989, Wright Research & Development Center, WRDC-TR-89-2082.
[3] M.Ghodbane, and J.P. Holman, 'Experimental Study of Spray Cooling with Freon-113', International Journal of Heat and Mass Transfer, 1991, Vol. 34 pp. 1163-1174.
[4] M.S. Sehmbey, M.R. Pais, and L.C. Chow, 'A Study of DiamondLaminated Surfaces in Evaporative Spray Cooling ',Thin Solid Films, 1992, Vol. 212 pp. 25-29.
[5] J.Tehver, H. Sui, and V. Temkina, 'Heat Transfer and Hysteresis Phenomena in Boiling on Porous Plasma-Sprayed Surface',Experimental Thermal and Fluid Science, 1992, Vol. 5 pp. 714-727.
[6] K.A.Estes, and I. Mudawar, 'Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces', International Journal of Heat and Mass Transfer, 1995, Vol. 38 pp. 2985-2996.
[7] A.R.Glover, S.M. Skippon, and R.D. Boyle, 'Interferometric Laser Imaging for Droplet Sizing: A Method for Droplet-Size Measurement in Sparse Spray Systems', Applied Optics, 1995, Vol. 34 pp. 8409-8421.
[8] I.Mudawar,and K.A. Estes, 'Optimizing and Predicting Chf in Spray Cooling of a Square Surface', Journal of Heat Transfer, 1996, Vol. 118 pp. 672-679.
[9] K.Sone, et al,' Spray Cooling Characteristics of Water and FC-72 under Reduced and Elevated Gravity for Space Application ', Energy Conversion Engineering Conference, 1996. IECEC 96., Proceedings of the 31st Intersociety. 1996.
[10] J.Yang, L.C. Chow, and M.R. Pais, 'Nucleate Boiling Heat Transfer in Spray Cooling', Journal of Heat Transfer, 1996, Vol. 118 pp. 668-671.
[11] J.D.Bernardin, C.J. Stebbins, and I. Mudawar, 'Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface', International Journal of Heat and Mass Transfer, 1997, Vol. 40 pp. 247-267.
[12] J.E.González, and W.Z. Black, 'Study of Droplet Sprays Prior to Impact on a Heated Horizontal Surface', Journal of Heat Transfer, 1997, Vol. 119 pp. 279-287.
[13] P.Tartarini , G. Lorenzini, and M.R. Randi, 'Experimental Study of Water Droplet Boiling on Hot, Non-Porous Surfaces', Heat and Mass Transfer, 1999, Vol. 34 pp. 437-447.
[14] J.J.Huddle, et al, ' Thermal Management of Diode Laser Arrays ', Semiconductor Thermal Measurement and Management Symposium, 2000. Sixteenth Annual IEEE. 2000.
[15] K.Yoshida,et al., 'Spray Cooling under Reduced Gravity Condition', Journal of Heat Transfer, 2000, Vol. 123 pp. 309-318.
[16] R.Chen, L.C. Chow, and J.E. Navedo, 'Effects of Spray Characteristics on Critical Heat Flux in Subcooled Water Spray Cooling', International Journal of Heat and Mass Transfer, 2002, Vol. 45 pp. 4033-4043.
[17] W.Jia,and H.H. Qiu, 'Experimental Investigation of Droplet Dynamics and Heat Transfer in Spray Cooling', Experimental Thermal and Fluid Science, 2003, Vol. 27 pp. 829-838.
[18] S. S. Hsieh, T. C. Fan, and H.H. Tsai, ' Spray Cooling Characteristics of Water and R-134a. Part I : Nucleate Boiling ',International Journal of Heat and Mass Transfer, 2004, Vol. 47 pp. 5703-5712.
[19] S. S. Hsieh, T. C. Fan, and H.H. Tsai, ' Spray Cooling Characteristics of Water and R-134a. Part II : Transient cooling ',International Journal of Heat and Mass Transfer, 2004, Vol. 47 pp. 5713-5724.
[20] S.N.Heffington, and A. Glezer,' Two-Phase Thermal Management Using a Small-Scale Heat Transfer Cell Based on Vibration-Induced Droplet Atomization ', Thermal and Thermomechanical Phenomena in Electronic Systems, 2004. ITHERM '04. The Ninth Intersociety Conference on. 2004.
[21] J.H.Kim, S.M. You, and S.U.S. Choi, 'Evaporative Spray Cooling of Plain and Microporous Coated Surfaces', International Journal of Heat and Mass Transfer, 2004, Vol. 47 pp. 3307-3315.
[22] R.J.Adrian,'Twenty Years of Particle Image Velocimetry', Experiments in Fluids, 2005, Vol. 39 pp. 159-169.
[23] S. S. Hsieh, and H. H. Tsai, ' Thermal and Flow Measurements of Continuous Cryogenic Spray Cooling ',Arch. Dermatol. Res., 2006, Vol. 298 pp. 82-96.
[24] S. S. Hsieh, and C. H. Tien,'R-134a Spray Dynamics and Impingement Cooling in the Non-Boiling Regime ',International Journal of Heat and Mass Transfer, 2006, Vol. 50 pp. 502-512.
[25] J.E.Guinn, and D. Banerjee, 'Experimental Study of Nanofluids for Droplet Cooling Applications Using Temperature Microsensors', ASME 2006 International Mechanical Engineering Congress and Exposition Heat Transfer, 2006, Vol. Volume 2 pp. 8 pages.
[26] C. C.Hsieh, and S.C. Yao, 'Evaporative Heat Transfer Characteristics of a Water Spray on Micro-Structured Silicon Surfaces', International Journal of Heat and Mass Transfer, 2006, Vol. 49 pp. 962-974.
[27] J.R.Rybicki, and I. Mudawar, 'Single-Phase and Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays', International Journal of Heat and Mass Transfer, 2006, Vol. 49 pp. 5-16.
[28] E.A.Silk, J. Kim, and K. Kiger, 'Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination', International Journal of Heat and Mass Transfer, 2006, Vol. 49 pp. 4910-4920.
[29] Y.R.Jeng, et al, 'Pzt Bimorph Actuated Atomizer Based on Higher Order Harmonic Resonance and Reduced Operating Pressure', Sensors and Actuators A: Physical, 2007, Vol. 136 pp. 434-440.
[30] C.Sodtke, and P. Stephan, 'Spray Cooling on Micro Structured Surfaces', International Journal of Heat and Mass Transfer, 2007, Vol. 50 pp. 4089-4097.
[31] Y.R.Jeng, G.H. Feng, and C.C. Su, 'Droplets Ejection Apparatus and Methods', Recent Patents on Engineering, 2008, Vol. 2 pp. 201-207.
[32] M.Visaria, and I. Mudawar, 'Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux', International Journal of Heat and Mass Transfer, 2008, Vol. 51 pp. 5269-5278.
[33] R.Srikar, et al, 'Nanofiber Coating of Surfaces for Intensification of Drop or Spray Impact Cooling', International Journal of Heat and Mass Transfer, 2009, Vol. 52 pp. 5814-5826.
[34] J.Shen, et al, 'Droplet Impingement Dynamics: Effect of Surface Temperature During Boiling and Non-Boiling Conditions', Journal of Physics: Condensed Matter, 2009, Vol. 21.
[35] J.Shen,et al, 'Simultaneous Droplet Impingement Dynamics and Heat Transfer on Nano-Structured Surfaces', Experimental Thermal and Fluid Science, 2010, Vol. 34 pp. 496-503.
[36] B.Abbasi, J. Kim, and A. Marshall, 'Dynamic Pressure Based Prediction of Spray Cooling Heat Transfer Coefficients', International Journal of Multiphase Flow, 2010, Vol. 36 pp. 491-502.
[37] H.Bellerova,et al, 'SprayCooling by Al2O3 and TiO2 Nanoparticles in Water',Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on.
[38] L.H.Chien, and C.Y. Chang, 'An Experimental Study of Two-Phase Multiple Jet Cooling on Finned Surfaces Using a Dielectric Fluid', Applied Thermal Engineering, 2011, Vol. 31 pp. 1983-1993.
[39] C.Gerardi, et al, 'Infrared Thermometry Study of Nanofluid Pool Boiling Phenomena', Nanoscale Research Letters, 2011, Vol. 6 pp. 1-17.
[40] W.L.Cheng, et al, 'Experimental and Theoretical Investigation of Surface Temperature Non-Uniformity of Spray Cooling', Energy, 2011, Vol. 36 pp. 249-257.
[41] W. L.Cheng, et al, 'Spray Characteristics and Spray Cooling Heat Transfer in the Non-Boiling Regime', Energy, 2011, Vol. 36 pp. 3399-3405.
[42] S. Wiesche, U. Bardas, and S. Uhkötter, 'Boiling Heat Transfer on Large Diamond and Sic Heaters: The Influence of Thermal Wall Properties', International Journal of Heat and Mass Transfer, 2011, Vol. 54 pp. 1886-1895.
[43] M.R.O.Panão, A.L.N. Moreira, and D.F.G. Durão, 'Thermal-Fluid Assessment of Multijet Atomization for Spray Cooling Applications', Energy, 2011, Vol. 36 pp. 2302-2311.
[44] S.Ndao, Y. Peles, and M.K. Jensen, 'Experimental Investigation of Flow Boiling Heat Transfer of Jet Impingement on Smooth and Micro Structured Surfaces', International Journal of Heat and Mass Transfer, 2012, Vol. 55 pp. 5093-5101.
[45] H.Bostanci, et al, 'High Heat Flux Spray Cooling with Ammonia: Investigation of Enhanced Surfaces for Chf', International Journal of Heat and Mass Transfer, 2012, Vol. 55 pp. 3849-3856.
[46] A.F.Ali, and M.S. El-Genk, 'Effect of Inclination on Saturation Boiling of Pf-5060 Dielectric Liquid on 80- and 137-Μm Thick Copper Micro-Porous Surfaces', International Journal of Thermal Sciences, 2012, Vol. 53 pp. 42-48.
[47] C.Agrawal, et al, 'Rewetting and Maximum Surface Heat Flux During Quenching of Hot Surface by Round Water Jet Impingement', International Journal of Heat and Mass Transfer, 2012, Vol. 55 pp. 4772-4782.
[48] H.D.Haustein, et al, 'Local Heat Transfer Coefficient Measurement through a Visibly-Transparent Heater under Jet-Impingement Cooling', International Journal of Heat and Mass Transfer, 2012, Vol. 55 pp. 6410-6424.
[49] T.B.Chang, S.C. Syu, and Y.K. Yang, 'Effects of Particle Volume Fraction on Spray Heat Transfer Performance of Al2o3–Water Nanofluid', International Journal of Heat and Mass Transfer, 2012, Vol. 55 pp. 1014-1021.
[50] Z.Zhang, J. Li, and P. X. Jiang, 'Experimental Investigation of Spray Cooling on Flat and Enhanced Surfaces', Applied Thermal Engineering, 2013, Vol. 51 pp. 102-111.
[51] J.P.McHale, and S.V. Garimella, 'Nucleate Boiling from Smooth and Rough Surfaces – Part 2: Analysis of Surface Roughness Effects on Nucleate Boiling', Experimental Thermal and Fluid Science, 2013, Vol. 44 pp. 439-455.
[52] S.V.Ravikumar, et al, 'Achievement of Ultrafast Cooling Rate in a Hot Steel Plate by Air-Atomized Spray with Different Surfactant Additives', Experimental Thermal and Fluid Science, 2013, Vol. 50 pp. 79-89.
[53] W.Cheng, et al, 'An Experimental Investigation of Heat Transfer Enhancement by Addition of High-Alcohol Surfactant (Has) and Dissolving Salt Additive (Dsa) in Spray Cooling', Experimental Thermal and Fluid Science, 2013, Vol. 45 pp. 198-202.
[54] J.L.Xie, et al, 'Study of Heat Transfer Enhancement for Structured Surfaces in Spray Cooling', Applied Thermal Engineering, 2013, Vol. 59 pp. 464-472.
[55] A.G.Souza, and J.R. Barbosa , 'Experimental Evaluation of Spray Cooling of R-134a on Plain and Enhanced Surfaces', International Journal of Refrigeration, 2013, Vol. 36 pp. 527-533.
[56] E.Martínez-Galván, et al, 'Influence of Surface Roughness on a Spray Cooling System with R134a. Part I: Heat Transfer Measurements', Experimental Thermal and Fluid Science, 2013, Vol. 46 pp. 183-190.
[57] B.H.Yang, et al, 'Heat Transfer Enhancement of Spray Cooling with Ammonia by Microcavity Surfaces', Applied Thermal Engineering, 2013, Vol. 50 pp. 245-250.
[58] H.Bostanci, et al, 'High Heat Flux Spray Cooling with Ammonia: Investigation of Enhanced Surfaces for Htc', International Journal of Heat and Mass Transfer, 2014, Vol. 75 pp. 718-725.
[59] S.J.Thiagarajan, S. Narumanchi, and R. Yang, 'Effect of Flow Rate and Subcooling on Spray Heat Transfer on Microporous Copper Surfaces', International Journal of Heat and Mass Transfer, 2014, Vol. 69 pp. 493-505.
[60] S. S. Hsieh, S. Y. Luo, and R. Y. Lee, 'Spray Cooling Heat Transfer on Microstructured Thin Film Enhanced Surfaces',Experimental Thermal and Fluid Science, 2015, Vol. 68 pp. 123-134.
[61] H. Chen, W. L. Cheng, and Y. H. Peng, 'Experiment Study on Optimal Spray Parameters of Piezoelertic Atomizer Based Spray Cooling', International Journal of Heat and Mass Transfer, 2016, Vol. 103 pp. 57-65.
[62] H. S. Ahn, J. M. Kim, and T. J. Kim, 'Enhanced Heat Transfer is Dependent on Thickness of Graphene Films: The Heat Dissipation during Boiling',Scientific Reports, Vol. 4,2014, 6276.
[63] H. Wang, J. J. Wu, and Q. Yang, 'Heat Transfer Enhancement of AmmoniaSpray Cooling by Surface Modification ',International Journal of Heat and Mass Transfer, 2016, Vol. 101 pp. 60-68.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code