Responsive image
博碩士論文 etd-0715117-103235 詳細資訊
Title page for etd-0715117-103235
論文名稱
Title
大樹舊鐵橋人工濕地之生態及水質淨化效益評估
Using the Dashu Old Rail Bridge Constructed Wetland ystem for Polluted River Water Purification and Ecosystem Rehabilitation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
156
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-10
繳交日期
Date of Submission
2017-08-15
關鍵字
Keywords
水質監測、統計分析、生態工法、災後復育、人工濕地
statistical analysis, ecological technology, water quality monitoring, ecosystem rehabilitation, constructed wetland
統計
Statistics
本論文已被瀏覽 5680 次,被下載 0
The thesis/dissertation has been browsed 5680 times, has been downloaded 0 times.
中文摘要
高雄市政府近年來積極推動生態及低碳城市之建設,已經成功塑造出綠色宜居環境。人工濕地具有防洪、流量調節、生態棲地、碳匯、生物多樣性營造、水質淨化、氣候調節、環境教育及科學研究等多功能特性,並能達到氣候變遷調適及生態復育的目的。若想使濕地有效發揮其功能,則須對濕地進行長期的監測及效益評估,並對評估結果進行檢討及擬提改善策略,方能使濕地達到預期的多功能目標。位於高雄市大樹區的舊鐵橋人工濕地,面積約為120公頃,依進流水源分為A系統及B系統,具有淨化工業、生活,畜牧污水,提升高屏溪水質、復育河岸生態及重新塑造自然生態環境目的。除人工濕地外,該場域設有礫間曝氣氧化系統提升淨水效益。
本研究以大樹舊鐵橋人工濕地作為研究目標,針對人工濕地和礫間曝氣系統之水質淨化效益、水文變化控制、濕地對生態復育及生態多樣性、進行分析與評估,並利用統計軟體Statistical Product and Service Solutions (SPSS)探討水質、水文及生態間之變化與相關性。此外,本研究亦針對該場址受2009年颱風莫拉克八八風災重創後之復育成效進行探討,評估在八八風災過後,大樹舊鐵橋人工濕地地貌之演變趨勢。
研究顯示,A、B兩系統之懸浮固體物之淨化效益不佳,主要原因本場址位於南台灣,日照豐富且水中含有豐富養分,易刺激水中藻類大量繁殖,當藻類大量死亡產生藻類絮聚現象(Flocculation)便造成懸浮固體物增加。受到水質特性影響,造成生物淨化能力受限。礫間接觸曝氣系統設有曝氣單元,經由系統處理後水中溶氧由3.31 mg/L增加至5.76 mg/L,顯示此系統確實有助於提升水中溶氧,促進水中污染物淨化;降低人工濕地負荷量之目的。八八風災後,水中藻類逐漸適應災後環境,水中微生物亦完成馴養,A及B系統之總磷(Total Phosphrusate, TP)、總氮(Totla Nitrogen,TN)、氨氮(Ammonia Nitrogen, NH3-N)、總凱氏氨(Total Kjeldahl Nitrogen, TKN)之移除量均有改善情形,且A系統之災後復育更佳,經變異數分析(Analysis of Variance, ANOVA)檢定後,TN、NH3-N、TKN均有顯著降低(p-value<0.05)。本場址具有豐富生態,由生物多樣性指數發現,鳥、蜻蛉、蝶類物種均有增加趨勢。以斯皮爾曼等級相關係數(Spearman's Rank Correlation Coefficient)進行水質、生物多樣性指數之相關性研究,顯示水質及生物多樣性具關連性。
本研究顯示高雄市政府對於濕地及生態保育的貢獻,並可有效評估大樹區舊鐵橋人工濕地在水質淨化、生態復育及生態多樣性所發揮的效益。可做為高雄市政府未來擬定氣候變遷調適策略之重要參考資料。
Abstract
Kaohsiung City Government actively promotes sustainable development, which includeds the constructed wetland (CWs) construction. CW is one of natural treatment technologies. CWs has various functions including flood control, wildlife habitat, carbon sink, water quality improvement, floodwater stage, scientific research, environmental education, and entertainment. Due to the relatively lower construction as well as the operational and maintenance cost, CW is especially an appropriate alternative treatment facility for small townships, communities, and industries that cannot afford traditional treatment systems with high installation. CWs have been used successfully for the treatment of surface runoff, landfill leachate, polluted river water, and wastewater (e.g., agricultural drainage, urban wastewater, industrial discharge). In order to keep CWs ability, regulation of monitoring and maintenance are necessary. Dashu Old Rail Bridge Constructed Wetland System (DORBCWS) situated in Dashu in Kaohsiung in Taiwan, and area was 120 ha. Separation of system A and B were based on different water sources. Besides CWs, DORBCWS also has gravel contact oxidation treatment system (GCOTS) which decrease pollutant loading in system B.
In this research water purification efficacy, hydrological change, and biodiversity had been investigated. Statistical Product and Service Solutions (SPSS) was applied to calculated correlation of water quality and biodiversity, compare different natural treatment technologies, and evaluate rehabilitation of water purification after Typhoon Morakot.
Results show that suspended solid (SS) and chlorophyll-a (Chl-a) did neither not be efficiently removed, because algae grew in conditions of strong sunlight and copious nutrients in DORBCWS. Although biodegradation could be limited by cellulose and lignin in waste water from the mill in system A, ORBCW was successfully used to treat wastewater, included BOD, NH3-N, TP and SS. Furthermore, BOD showed best removed to 991 kg/d in system B. On the other hand, dissolved oxygen (DO) data in GCOTS indicated that aeration caused the rise of DO from 3.31 mg/L to 5.76 mg/L. Enrichment DO assisted the ability of water cleaning and improvement of pollutant loading in CWs. Moreover, algae adapted to water characteristic with post-disaster recovery after Typhoon Morakot. Total phosphate (TP), total nitrogen (TN), ammonia nitrogen (NH3-N), and total Kjeldahl Nitrogen (TKN) were improved, over time. Purification results of NH3-N, TKN, and TN in system A developed were significantly improved (p<0.05). The varied calculation in the three ecological parameters (Shannon Diversity Index, Richness, and Evenness) for the bird, odonates, and butterflies during the five-year investigation period increased. Spearman rank correlation results of biodiversity and water quality indicated that parts of water characteristic affected each other, especially nitrate concentration.
This study demonstrated that the Kaohsiung City Government has significant contributions to wetland protection and ecological conservation. Results from this study can be used to evaluate the effectiveness of DORBCWS on water quality purification, ecosystem restoration, and biodiversity improvement. The results will be also useful to the city government in determining the climate change strategies.
目次 Table of Contents
謝誌 i
摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第一章 前言 1
1.1研究緣起 1
1.2研究目的 4
第二章 文獻回顧 5
2.1濕地概論 5
2.1.1濕地定義 5
2.1.2濕地植物 6
2.1.3濕地水文 9
2.1.4濕地土壤 11
2.1.5濕地類型 14
2.2人工濕地緒論 18
2.2.1人工濕地之分類及功能 18
2.2.2人工濕地之水質淨化機制 24
2.3礫間接觸曝氣系統(Gravel Contact Oxidation Treatment System, GCOTS) 28
2.4統計分析評估濕地水質 32
2.5 法規放流水標準 35
第三章 研究方法 36
3.1場址選定 36
3.1.1場址歷史 36
3.1.2場址背景 38
3.1.3舊鐵橋人工濕地之設計 38
3.1.4礫間接觸曝氣氧化之設計 39
3.2水文量測及水質監測 42
3.2.2水質採樣分析 43
3.3生態棲地調查 45
3.3.1生態調查工作規劃 45
3.3.2資料分析與生態環境評估 46
3.4統計分析方法 47
3.4.1 獨立t檢定(Indepent t-test) 47
3.4.2 變異數分析(Analysis of Variance, ANOVA) 47
3.4.3 斯皮爾曼等級相關係數分析(Spearman's Rank Correlation Coefficient) 47
第四章 結果與討論 49
4.1濕地水文監測結果 49
4.2濕地水質變化 53
4.2.1基本水質監測 53
4.2.2污染淨化效益 59
4.2.3 大樹舊鐵橋人工濕地淨化效益評估 74
4.2.4大樹舊鐵橋人工濕地災後復育評估 80
4.3 竹寮溪溝礫間接觸曝氣系統效益變化 86
4.3.1 礫間接觸曝氣氧化系統之基本水質參數變化 86
4.3.2 礫間接觸曝氣氧化系統之污染物濃度變化 88
4.3.3 礫間接觸曝氣系統與表面流濕地之比較 93
4.4 人工濕地生物多樣性調查分析 95
4.4.1 人工濕地鳥類多樣性調查 95
4.4.2 人工濕地蜻蛉類多樣性調查 95
4.4.3 人工濕地蝶類多樣性調查 96
4.5生態多樣性及水質相關分析 99
4.5.1鳥類生態多樣性指數及水質相關性評估 99
4.5.2蜻蛉類生態多樣性指數及水質相關性評估 99
4.5.3蝶類生態多樣性指數及水質相關性 100
4.5.4生態與濕地水質之關聯性評估 100
第五章 結論與建議 108
5.1結論 108
5.2建議 109
參考文獻 110
附錄一 A系統出流質量之斯皮爾曼等級相關係數 133
附錄二 B系統出流質量之斯皮爾曼等級相關係數 134
附錄三 A、B系統災後復育之Levene同質性檢定 135
附錄四 A系統災後復育之單因子變異數分析 136
附錄五 B系統災後復育之單因子變異數分析 137
附錄六 A系統災後復育之Tukey’S HSD檢定 138
附錄七 B系統災後復育之Tukey’S HSD檢定 140
附錄八 大樹舊鐵橋人工濕地現場與採樣情形 142

圖目錄
圖 2-1 植物根區間影響途徑 6
圖 2-2 都市化對能量流動之影響 8
圖 2-3 土壤頗面示意圖 12
圖 2-4 表面流人工濕地. 21
圖 2-5 地下流動式人工濕地之填充材 22
圖 2-6 地下流動式(平行流)人工濕地. 22
圖 2-7 地下流動式(垂直流)人工濕地 23
圖 2-8 人工濕地改良方法 23
圖 2-9 不同氧化還原電位之生物反應 30
圖 2-1 氮循環示意圖 30
圖 2-1 礫間接觸曝氣系統現場圖 31
圖 2-1 礫間接觸曝氣系統示意圖 31
圖 3-1 舊鐵橋人工濕地之莫拉克風災前後衛星圖 37
圖 3-2 歷年微氣象(氣溫、雨量)變化趨勢圖 38
圖 3-3 礫間接觸氧化系統單元配置圖 41
圖 3-4 水文量測及水質監測採樣位置 42
圖 4-1 A系統進出、流量變化圖 51
圖 4-2 B系統進出、流量變化圖 51
圖 4-3 A、B兩系統水力停留時間變化圖 52
圖 4-4 A、B兩系統水溫變化圖 56
圖 4-5 A、B兩系統pH變化圖 57
圖 4-6 A、B兩系統DO變化圖 58
圖 4-7 A、B兩系統SS濃度變化圖 65
圖 4-8 A、B兩系統BOD濃度變化圖 66
圖 4-9 A、B兩系統COD濃度變化圖 67
圖 4-10 A、B兩系統NH3-N濃度變化圖 68
圖 4-11 A、B兩系統NO3--N濃度變化圖 69
圖 4-12 A、B兩系統TN濃度變化圖 70
圖 4-13 A、B兩系統TP濃度變化圖 71
圖 4-14 A、B兩系統TC變化圖 72
圖 4-15 A、B兩系統Chl-a濃度變化圖 73
圖 4-16 A及B兩系統SS去除量變化圖 77
圖 4-17 A及B兩系統BOD去除量變化圖 77
圖 4-18 A及B兩系統NH3-N去除量變化圖 78
圖 4-19 A及B兩系統TP去除量變化圖 78
圖 4-20 A及B兩系統Chl-a去除量變化圖 79
圖 4-21 人工濕地災後復育之DO、SS及Chl-a移除量變化圖 83
圖 4-22 人工濕地災後復育之TKN、NH3-N及Chl-a移除量變化圖 84
圖 4-23 人工濕地災後復育之BOD及TP移除量變化圖 85
圖 4-24 礫間曝氣系統進出流水之T、pH、DO時間變化圖 87
圖 4-25 礫間曝氣系統進出流水之SS、BOD、COD時間變化圖 90
圖 4-26 礫間曝氣系統進出流水之NH3-N、TKN、TN時間變化圖 91
圖 4-27 礫間曝氣系統進出流水之TP、Chl-a、TC時間變化圖 92
圖 4-28 現地發現之黑翅鳶照片 97
圖 4-29 現地發現之瘦面細蟌照片 97
圖 4-30 現地發現之微小灰蝶照片 97
圖 4-31 鳥、蜻蛉、蝶類之生物多樣性指數變化圖 98

表目錄
表 2-1 水文變化影響濕地特性之研究 10
表 2-2 土壤剖面層及各層描述 12
表 2-3 濕地礦物質土壤及有機質土壤之比較表 13
表 2-4 美國魚類及野生動物署之濕地分類方法表 14
表 2-5 濕地所能提供之生態服務 20
表 2-6 濕地所能提供之生態服務 21
表 2-7 濕地水質淨化機制與影響污染物 29
表 2-8 統計分析應用於濕地及生態領域之研究 34
表 3-1 A、B系統之差異 40
表 3-2 礫間接觸曝氣氧化槽設計參數 40
表 3-3 檢測參考方法 44
表 3-4 生態調查方法 45
表 3-5 相關係數大小與其意義 48
表 4-1 A及B系統於2012-2016年間之代表污染物質量變化統計表 76
表 4-2 A及B及礫間接觸曝氣比較表 94
表 4-3 濕地進流水對鳥類生物多樣性指數之斯皮爾曼等級相關係數 102
表 4-4 濕地出流水對鳥類生物多樣性指數之斯皮爾曼等級相關係數 103
表 4-5 濕地進流水對蜻蛉類生物多樣性指數之斯皮爾曼等級相關係數 104
表 4-6 濕地出流水對蜻蛉類生物樣性指數之斯皮爾曼等級相關係數 105
表 4-7 濕地進流水對蝶類生物樣性指數之斯皮爾曼等級相關係數 106
表 4-8 濕地出流水對蝶類生物樣性指數之斯皮爾曼等級相關係數 107
參考文獻 References
Agboola, J. I., Ndimele, P. E., Odunuga, S., Akanni, A., Kosemani, B., Ahove, M. A. (2016) Ecological health status of the Lagos wetland ecosystems: Implications for coastal risk reduction. Estuarine, Coastal and Shelf Science, 183, 73-81.
Akratos, C. S. and Tsihrintzis, V. A. (2007) Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands, Ecological Engineering, 29(2), 173-191.
Aschehoug, E. T., Sivakoff, F. S., Cayton, H. L., Morris, W. F., Haddad, N. M. (2015) Habitat restoration affects immature stages of a wetland butterfly through indirect effects on predation, Ecology, 96(7), 1761-1767.
Baldwin, A. H., Jensen, K., Schönfeldt, M. (2014). Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities, Global Change Biology, 20(3), 835-850.
Beutel, M. W., Morgan, M. R., Erlenmeyer, J. J., Brouillard, E. S. (2014) Phosphorus removal in a surface-flow constructed wetland treating agricultural runoff, Journal of Environmental Quality, 43(3), 1071-1080.
Bhomia, R. K., Inglett, P. W., Reddy, K. R. (2015) Soil and phosphorus accretion rates in sub-tropical wetlands: Everglades Stormwater Treatment Areas as a case example, Science of the Total Environment, 533, 297-306.
Bodelier, P. L. and Steenbergh, A. K. (2014). Interactions between methane and the nitrogen cycle in light of climate change, Current Opinion in Environmental Sustainability, 9, 26-36.
Boog, J., Nivala, J., Aubron, T., Wallace, S., van Afferden, M., Müller, R. A. (2014) Hydraulic characterization and optimization of total nitrogen removal in an aerated vertical subsurface flow treatment wetland, Bioresource Technology, 162, 166-174.
Borne, K. E., Fassman, E. A., Tanner, C. C. (2013) Floating treatment wetland retrofit to improve stormwater pond performance for suspended solids, copper and zinc, Ecological Engineering, 54, 173-182.
Brooker, M. R., Bohrer, G., Mouser, P. J. (2014) Variations in potential CH4 flux and CO2 respiration from freshwater wetland sediments that differ by microsite location, depth and temperature, Ecological Engineering, 72, 84-94.
Butterworth, E., Dotro, G., Jones, M., Richards, A., Onunkwo, P., Narroway, Y., Jefferson, B. (2013) Effect of artificial aeration on tertiary nitrification in a full-scale subsurface horizontal flow constructed wetland, Ecological Engineering, 54, 236-244.
Calheiros, C. S., Quitério, P. V., Silva, G., Crispim, L. F., Brix, H., Moura, S. C., Castro, P. M. (2012) Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater, Journal of Environmental Management, 95(1), 66-71.
Carballeira, T., Ruiz, I., Soto, M. (2017) Aerobic and anaerobic biodegradability of accumulated solids in horizontal subsurface flow constructed wetlands, International Biodeterioration & Biodegradation, 119, 396-404.
Chang, J. J., Wu, S. Q., Dai, Y. R., Liang, W., Wu, Z. B. (2013) Nitrogen removal from nitrate-laden wastewater by integrated vertical-flow constructed wetland systems, Ecological Engineering, 58, 192-201.
Chang, T. J., Chang, Y. S., Lee, W. T., Shih, S. S. (2016) Flow uniformity and hydraulic efficiency improvement of deep-water constructed wetlands, Ecological Engineering, 92, 28-36.
Chatterjee, A, Adhikari, S., Mukhopadhyay, S. K. (2017) Effects of Waterbird Colonization on Limnochemical Features of a Natural Wetland on Buxa Tiger Reserve, India, During Wintering Period, Wetlands, 37(1), 177-190.
Chen, H., Ivanoff, D., Pietro, K. (2015) Long-term phosphorus removal in the Everglades stormwater treatment areas of South Florida in the United States, Ecological Engineering, 79, 158-168.
Chen, Y. L., Hong, X. Q., He, H., Luo, H. W., Qian, T. T., Li, R. Z., Jiang, H., Yu, H. Q. (2014) Biosorption of Cr (VI) by Typha angustifolia: mechanism and responses to heavy metal stress, Bioresource Technology, 160, 89-92.
Chen, Z. J., Tian, Y. H., Zhang, Y., Song, B. R., Li, H. C., Chen, Z. H. (2016) Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands, Ecological Engineering, 92, 243-250.
Chyan, J. M., Lin, C. J., Lin, Y. C., Chou, Y. A. (2016) Improving removal performance of pollutants by artificial aeration and flow rectification in free water surface constructed wetland, International Biodeterioration & Biodegradation, 113, 146-154.
Clark, V. R., Herzog, H. J. (2014) Assessment of the US EPA’s Determination of the Role for CO2, Environment Scienci Technolgy , 48, 7723-7729
Cowardin, L. M., Carter, V., Golet, F. C., LaRoe, E. T. (1979) Classification of wetlands and deepwater habitats of the United States. US Department of the Interior, US Fish and Wildlife Service, 131
Cui, E., Ren, L., Sun, H. (2015) Evaluation of variations and affecting factors of eco-environmental quality during urbanization, Environmental Science and Pollution Research, 22(5), 3958-3968.
Cui, X., Hao, H., Zhang, C., He, Z., Yang, X. (2016) Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars, Science of the Total Environment, 539, 566-575.
Daffonchio, D., Hirt, H., Berg, G. (2015) Plant-microbe interactions and water management in arid and saline soils principles of plant-microbe interactions., Springer International Publishing, Switzerland., 265-276.
Davranche, M., Dia, A., Fakih, M., Nowack, B., Gruau, G., Ona-Nguema, G., Petitjean, P., Martin, S., Hochreutener, R. (2013) Organic matter control on the reactivity of Fe(III)-oxyhydroxides and associated As in wetland soils: A kinetic modeling study, Chemical Geology, 335, 24–35.
Diagboya, P. N., Olu-Owolabi, B. I., Adebowale, K. O. (2015) Effects of time, soil organic matter, and iron oxides on the relative retention and redistribution of lead, cadmium, and copper on soils, Environmental Science and Pollution Research, 22(13), 10331-10339.
Ding, Y., Song X., Wang, Y., Yan, D. (2012) Effects of dissolved oxygen and influent COD/N ratios on nitrogen removal in horizontal subsurface flow constructed wetland, Ecological Engineering, 46, 107-111.
Ding, Y., Wang, W., Liu, X., Song, X., Wang, Y., Ullman, J. L. (2016) Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology, Bioresource Technology, 219, 757-761.
Dunne, E. J., Coveney, M. F., Hoge, V. R., Conrow, R., Naleway, R., Lowe, E. F., Wang, Y. (2015) Phosphorus removal performance of a large-scale constructed treatment wetland receiving eutrophic lake water, Ecological Engineering, 79, 132-142.
Dunne, E. J., Coveney, M. F., Marzolf, E. R., Hoge, V. R., Conrow, R., Naleway, R., Lowe, F.L., Battoe, L.E. Inglett, P.W. (2013) Nitrogen dynamics of a large-scale constructed wetland used to remove excess nitrogen from eutrophic lake water, Ecological Engineering, 61, 224-234.
Dupas, R., Gruau, G., Gu, S., Humbert, G., Jaffrézic, A., Gascuel-Odoux, C. (2015) Groundwater control of biogeochemical processes causing phosphorus release from riparian wetlands, Water Research, 84, 307-314.
ElZein, Z., Abdou, A., ElGawad, I. A. (2016) Constructed Wetlands as a Sustainable Wastewater Treatment Method in Communities, Procedia Environmental Sciences, 34, 605-617.
Ekka, A., Verma, M., Verma, A. (2015) Bacterial Degradation of Pulp Paper mill Wastewater Isolated from Contaminated site: A Review, Research Journal of Pharmacognosy and Phytochemistry, 7(3), 175-181.
Fan, J., Wang, W., Zhang, B., Guo, Y., Ngo, H. H., Guo, W., Zhang, J., Wu, H. (2013) Nitrogen removal in intermittently aerated vertical flow constructed wetlands: impact of influent COD/N ratios, Bioresource Technology, 143, 461-466.
Fan, J., Zhang, J., Guo, W., Liang, S., Wu, H. (2016) Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands, Bioresource Technology, 214, 871-875.
Filstrup, C. T., Wagner, T., Soranno, P. A., Stanley, E. H., Stow, C. A., Webster, K. E., Downing, J. A. (2014) Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes, Limnology and Oceanography, 59(5), 1691-1703.
Gallien, L., Altermatt, F., Wiemers, M., Schweiger, O., Zimmermann, N. E. (2017) Invasive plants threaten the least mobile butterflies in Switzerland. Diversity and Distributions, 23(2), 185-195.
Gao, L., Zhang L., Shao, H. (2014) Phosphorus bioavailability and release potential risk of the sediments in the coastal wetland: a case study of Rongcheng Swan Lake, Shandong, China, CLEAN–Soil, Air, Water, 42(7), 963-972.
Gargallo, S., Martín, M., Oliver, N., Hernández-Crespo, C. (2017) Sedimentation and resuspension modelling in free water surface constructed wetlands, Ecological Engineering, 98, 318-329.
Golfieri, B., Hardersen, S., Maiolini, B., Surian, N. (2016) Odonates as indicators of the ecological integrity of the river corridor: Development and application of the Odonate River Index (ORI) in northern Italy, Ecological Indicators, 61, 234-247.
Gomez, E., Durillon, C., Rofes, G., Picot, B. (1999) Phosphate adsorption and release from sediments of brackish lagoons: pH, O2 and loading influence, Water Research, 33(10), 2437-2447.
Gottschall, N., Boutin C., Crolla, A., Kinsley, C., Champagne, P. (2007). The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada, Ecological Engineering, 29(2), 154-163.
Gupta, A. D., Sarkar, S., Ghosh, P., Saha, T., Sil, A. K. (2016) Phosphorous dynamics of the aquatic system constitutes an important axis for waste water purification in natural treatment pond (s) in East Kolkata Wetlands. Ecological Engineering, 90, 63-67.
Gwiazda, R., Woźnica, A., Łozowski, B., Kostecki, M., Flis, A. (2014) Impact of waterbirds on chemical and biological features of water and sediments of a large, shallow dam reservoir, Oceanological and Hydrobiological Studies, 43(4), 418-426
Hao, R., Li, S., Li, J. Meng, C. (2013) Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: Operating performance and bacterial community, Bioresource Technology, 143, 178-186.
Haynes, R. J. (2015) Use of industrial wastes as media in constructed wetlands and filter beds—prospects for removal of phosphate and metals from wastewater streams, Critical Reviews in Environmental Science and Technology, 45(10), 1041-1103.
Hefting, M. M., van den Heuvel, R. N., Verhoeven, J. T. (2013) Wetlands in agricultural landscapes for nitrogen attenuation and biodiversity enhancement: Opportunities and limitations, Ecological Engineering, 56, 5-13.
Huang, J., Cai, W., Zhong, Q., Wang, S. (2013) Influence of temperature on micro-environment, plant eco-physiology and nitrogen removal effect in subsurface flow constructed wetland, Ecological Engineering, 60, 242-248.
Huang, X., Zheng, J., Liu, C., Liu, L., Liu, Y., Fan, H. (2017) Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: Effect of hydraulic flow direction and substrate type, Chemical Engineering Journal, 308, 692-699.
Hudson, J. and Berrill, M. (1986) Tolerance of low pH exposure by the eggs of Odonata (dragonflies and damselflies). Hydrobiologia, 140(1), 21-25.
Ibekwe, A. M., Ma, J., Murinda, S., Reddy, G. B. (2016) Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste, Science of the Total Environment, 544, 68-76.
Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: the physical science basis.
Irick, D. L., Gu, B., Li, Y. C., Inglett, P. W., Frederick, P. C., Ross, M. S., Wright, A. L., Ewe, S. M. L. (2015) Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades. Science of the Total Environment, 532, 40-47.
Jácome, J. A., Molina, J., Suárez, J., Mosqueira, G., Torres, D., (2016) Performance of constructed wetland applied for domestic wastewater treatment: Case study at Boimorto (Galicia, Spain), Ecological Engineering, 95, 324-329.
Janssens, L. and Stoks, R. (2013) Exposure to a widespread non-pathogenic bacterium magnifies sublethal pesticide effects in the damselfly Enallagma cyathigerum: from the suborganismal level to fitness-related traits, Environmental Pollution, 177, 143-149.
Jiang, X., Hou, X., Zhou, X., Xin, X., Wright, A., Jia, Z. (2015) pH regulates key players of nitrification in paddy soils, Soil Biology and Biochemistry, 81, 9-16.
Jing, Z., He, R., Hu, Y., Niu, Q., Cao, S., Li, Y. Y. (2015) Practice of integrated system of biofilter and constructed wetland in highly polluted surface water treatment, Ecological Engineering, 75, 462-469.
Johannesson, K. M., Kynkäänniemi, P., Ulén, B., Weisner, S. E. B., Tonderski, K. S. (2015) Phosphorus and particle retention in constructed wetlands—A catchment comparison, Ecological Engineering, 80, 20-31.
Johari, N. E., Abdul-Talib, S., Wahid, M. A., Ghani, A. A. (2016) Trend of Total Phosphorus on Total Suspended Solid Reduction in Constructed Wetland Under Tropical Climate., ISFRAM 2015, 273-280.
Kadlec, R. H. and Wallace, S. D. (2008) Treatment wetlands, CRC press.
Kim, B., Gautier M., Simidoff, A., Sanglar, C., Chatain, V., Michel, P., Gourdon, R. (2016) pH and Eh effects on phosphorus fate in constructed wetland's sludge surface deposit, Journal of Environmental Management, 183, 175-181.
Kim, S. Y., Veraart, A. J., Meima-Franke, M., Bodelier, P. L. (2015) Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments, Geoderma, 259, 354-361.
Kligerman, D. C., and Bouwer, E. J. (2015) Prospects for biodiesel production from algae-based wastewater treatment in Brazil: A review, Renewable and Sustainable Energy Reviews, 52, 1834-1846.
Konar, M., Todd, M. J., Muneepeerakul, R., Rinaldo A., Rodriguez-Iturbe I. (2013) Hydrology as a driver of biodiversity: Controls on carrying capacity, niche formation, and dispersal, Advances in Water Resources, 51, 317-325.
Kutcher, T. E., and Bried, J. T. (2014) Adult Odonata conservatism as an indicator of freshwater wetland condition, Ecological Indicators, 38, 31-39.
Kunza, L. A. and Hall, Jr. R. O. (2014) Nitrogen fixation can exceed inorganic nitrogen uptake fluxes in oligotrophic streams. Biogeochemistry, 121(3), 537-549.
Lai, D. Y. (2014) Phosphorus fractions and fluxes in the soils of a free surface flow constructed wetland in Hong Kong. Ecological Engineering, 73, 73-79.
Ledón, Y. C., Rivas, A., López, D., Vidal, G. (2017) Life-cycle greenhouse gas emissions assessment and extended exergy accounting of a horizontal-flow constructed wetland for municipal wastewater treatment: A case study in Chile. Ecological Indicators, 74, 130-139.
Lefebvre, G., Germain, C., Poulin, B. (2015) Contribution of rainfall vs. water management to Mediterranean wetland hydrology: Development of an interactive simulation tool to foster adaptation to climate variability, Environmental Modelling & Software, 74, 39-47.
Li, C., Wu, S., Dong, R. (2015a) Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland, Journal of Environmental Management, 151, 310-316.
Li, D., Huang, D., Guo, C., Guo, X. (2015b) Multivariate statistical analysis of temporal–spatial variations in water quality of a constructed wetland purification system in a typical park in Beijing, China, Environmental Mnitoring and assessment, 187(1), 1-14.
Li, M., Zhang, J., Wang, G., Yang, H., Whelan, M. J., White, S. M. (2013) Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy, Applied Geochemistry, 33, 213-221.
Ligi, T., Truu, M., Oopkaup, K., Nõlvak, H., Mander, Ü., Mitsch, W. J., Truu, J. (2015) The genetic potential of N2 emission via denitrification and ANAMMOX from the soils and sediments of a created riverine treatment wetland complex, Ecological Engineering, 80, 181-190.
Lin, J. L., Tu, Y. T., Chiang, P. C., Chen, S. H., Kao, C. M. (2015) Using aerated gravel-packed contact bed and constructed wetland system for polluted river water purification: A case study in Taiwan, Journal of Hydrology, 525, 400-408.
Liu, H., Hu, Z., Zhang, J., Ngo, H. H., Guo, W., Liang, S., Fan, J., Lu, S., Wu, H., (2016) Optimizations on supply and distribution of dissolved oxygen in constructed wetlands: A review, Bioresource Technology, 214, 797-805.
Lovelock, C. E., Adame, M. F., Bennion, V., Hayes, M., Reef, R., Santini, N., Cahoon, D. R. (2015) Sea level and turbidity controls on mangrove soil surface elevation change. Estuarine, Coastal and Shelf Science, 153, 1-9.
Lund, J. O., Wissinger, S. A., Peckarsky, B. L. (2016) Caddisfly behavioral responses to drying cues in temporary ponds: implications for effects of climate change, Freshwater Science, 35(2), 619-630.
Mackintosh, T. J., Davis, J. A., Thompson, R. M. (2016) Tracing metals through urban wetland food webs. Ecological Engineering, 94 ,200-213.
Magdalena, G. G., Czekala, W., Jóźwiakowski, K., Lewicki, A., Dach, J., Marzec, M., Pytka, A., Janczak, D., Kowalczyk, D., Alina, K. J., Listosz, A. (2016) The possibility of using plants from hybrid constructed wetland wastewater treatment plant for energy purposes, Ecological Engineering, 95, 534-541.
Mahapatra, D. M., Chanakya, H. N., Ramachandra, T. V. (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater, Bioresource Technology, 168, 142-150.
Mander, Ü. and Chazarenc, F. (2015) Wetland pollutant dynamics and control, Ecological Engineering, 80, 1-7.
Means, M. M., Ahn, C., Noe, G. B. (2016) Planting richness affects the recovery of vegetation and soil processes in constructed wetlands following disturbance, Science of the Total Environment, 579, 1366-1378.
Meir, T., Orton, P. M., Pullen, J., Holt, T., Thompson, W. T., Arend, M. F., (2013) Forecasting the New York City urban heat island and sea breeze during extreme heat events, Weather and Forecasting, 28(6), 1460-1477.
Mietto, A., Politeo, M., Breschigliaro, S., Borin, M. (2015) Temperature influence on nitrogen removal in a hybrid constructed wetland system in Northern Italy, Ecological Engineering, 75, 291-302.
Mitsch, W. J., Zhang, L., Marois, D., Song, K. (2015) Protecting the Florida Everglades wetlands with wetlands: Can stormwater phosphorus be reduced to oligotrophic conditions?, Ecological Engineering, 80, 8-19.
Morató, J., Codony, F., Sánchez, O., Pérez, L. M., García, J., Mas, J. (2014) Key design factors affecting microbial community composition and pathogenic organism removal in horizontal subsurface flow constructed wetlands. Science of the Total Environment, 481, 81-89.
Mukhtar, H. and Imran, M. (2016) Water-Nutrient-food Nexus The Role of Green Algae for Sustainable Food Production in Urban Wetlands Through Untreated Wastewater, International Journal on Advanced Science, Engineering and Information Technology, 6(2), 137-140.
Negreira, N., Regueiro, J., de Alda, M. L., Barceló, D. (2016) Reactivity of vinca alkaloids during water chlorination processes: Identification of their disinfection by-products by high-resolution quadrupole-Orbitrap mass spectrometry, Science of the Total Environment, 544, 635-644.
Newell, P. and Roberts, J. T. (2016) The Globalization and Environment Reader, Wiley-Blackwell
Nguyen, M. T., Jasper, J. T., Boehm, A. B., Nelson, K. L. (2015) Sunlight inactivation of fecal indicator bacteria in open-water unit process treatment wetlands: Modeling endogenous and exogenous inactivation rates, Water Research, 83, 282-292.
Nivala, J., Wallace, S., Headley, T., Kassa, K., Brix, H. van Afferden, M., Müller, R. (2013) Oxygen transfer and consumption in subsurface flow treatment wetlands, Ecological Engineering, 61, 544-554.
Ning, Y. F., Chen, Y. P., Shen, Y., Zeng, N., Liu, S. Y., Guo, J. S., Fang, F. (2014) A new approach for estimating aerobic–anaerobic biofilm structure in wastewater treatment via dissolved oxygen microdistribution, Chemical Engineering Journal, 255, 171-177.
Noe, G. B., Hupp, C. R., Rybicki, N. B. (2013) Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands, Ecosystems, 16(1), 75-94.
Odum, E.P. (1993) Ecology and our endangered life-support systems. 2nd ed. Sinauer Associates, Inc., Massachusetts.
Odum, H.T. (2016) Heavy metals in the environment: using wetlands for their removal. CRC Press.
Paerl, H. W., Gardner, W. S.. Havens, K. E., Joyner, A. R., McCarthy, M. J., Newell, S. E., Qin, B., Scott, J. T., 2016, Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients, Harmful Algae, 54, 213-222.
Paranychianakis, N. V., Tsiknia, M., Kalogerakis, N. (2016) Pathways regulating the removal of nitrogen in planted and unplanted subsurface flow constructed wetlands, Water Research, 102, 321-329.
Park, J. H., Kim, S. H., Delaune, R. D., Kang, B. H., Kang, S. W., Cho, J. S., OK, Y.S., Seo, D. C. (2016) Enhancement of phosphorus removal with near-neutral pH utilizing steel and ferronickel slags for application of constructed wetlands, Ecological Engineering, 95, 612-621.
Peng, L., Hua, Y., Cai, J., Zhao, J., Zhou, W., Zhu, D. (2014) Effects of plants and temperature on nitrogen removal and microbiology in a pilot-scale integrated vertical-flow wetland treating primary domestic wastewater, Ecological Engineering, 64, 285-290.
Pietro, K. C., and Ivanoff, D. (2015) Comparison of long-term phosphorus removal performance of two large-scale constructed wetlands in South Florida, U.S.A., Ecological Engineering, 79, 143-157.
Redel, Y. D., Escudey, M., Alvear, M., Conrad, J., Borie, F. (2015) Effects of land use change on P bioavailability determined by chemical fractionation and 31P-NMR spectroscopy in a Nothofagus forest and adjacent grassland, Journal of Soil Science and Plant Nutrition, 15(4), 1061-1070.
Ren, K., Yang, P. H., Jiang, Z. L., Wang, Z. B., Shi, Y., Wang, F. K., Li X. C. (2015) Variation Characteristics and Sources of Heavy Metals in an Urban Karst Groundwater System during Rainfall Event, Huan Jing Ke Xue, 36(4), 1270-1276.
Rinklebe, J., Knox, A. S., Paller, M. (2016) Trace elements in waterlogged soils and sediments, CRC Press.
Saeed, T., Paul, B., Afrin, R., Al-Muyeed, A., Sun G. (2016) Floating constructed wetland for the treatment of polluted river water: A pilot scale study on seasonal variation and shock load, Chemical Engineering Journal, 287, 62-73.
Sanchez, C. A., Childers, D. L. Turnbull, L., Upham, R. F. Weller, N. (2016) Aridland constructed treatment wetlands II: Plant mediation of surface hydrology enhances nitrogen removal, Ecological Engineering, 97, 658-665.
Sanford, M. R., Chan, K., Walton, W. E. (2005). Effects of inorganic nitrogen enrichment on mosquitoes (Diptera: Culicidae) and the associated aquatic community in constructed treatment wetlands, Journal of Medical Entomology, 42(5), 766-776.
Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E., Orihel, D. M. (2016) Reducing phosphorus to curb lake eutrophication is a success, Environmental Science and Techology, 50(17), 8923-8929
Schram, E., Roques, J. A., van Kuijk, T., Abbink, W., van de Heul, J., de Vries, P., Flik, G. (2014) The impact of elevated water ammonia and nitrate concentrations on physiology, growth and feed intake of pikeperch (Sander lucioperca), Aquaculture, 420, 95-104.
Sharp, J. L., Sojda, R. S., Greenwood, M., Rosenberry, D. O., Warren, J. M. (2013) Statistical classification of vegetation and water depths in montane wetlands, Ecohydrology, 6(2), 173-181.
Shen, Z., Zhou, Y., Liu, J., Xiao, Y., Cao, R., Wu, F. (2015) Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland, Bioresource Technology, 175, 239-244.
Shih, P. K., Chang, W. L. (2015) The effect of water purification by oyster shell contact bed, Ecological Engineering, 77, 382-390.
Singh, S., Inamdar, S., Mitchell, M., McHale, P. (2014) Seasonal pattern of dissolved organic matter (DOM) in watershed sources: influence of hydrologic flow paths and autumn leaf fall, Biogeochemistry, 118(1-3), 321-337.
Song, K., Hernandez, M. E., Batson, J. A., Mitsch, W. J., (2014) Long-term denitrification rates in created riverine wetlands and their relationship with environmental factors, Ecological Engineering, 72, 40-46.
Staley, Z. R., Rohr, J. R., Senkbeil, J. K., Harwood, V. J. (2014) Agrochemicals indirectly increase survival of E. coli O157: H7 and indicator bacteria by reducing ecosystem services, Ecological Applications, 24(8), 1945-1953.
Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Moormann, H., (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment, Biotechnology Advances, 22(1), 93-117.
Strickman, R. J. and Mitchell, C. P. J. (2017) Methylmercury production and accumulation in urban stormwater ponds and habitat wetlands, Environmental Pollution, 221, 326-334.
Suif, Z., Amr, F., Yoshimura, C., Saavedra, O. (2016) Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin, Science of the Total Environment, 568, 933-945.
Sullivan, A. B., Snyder, D. M., Rounds, S. A. (2010) Controls on biochemical oxygen demand in the upper Klamath River, Oregon, Chemical Geology, 269(1), 12-21.
Sun, R., Chen, A., Chen, L., Lü, Y. (2012) Cooling effects of wetlands in an urban region: The case of Beijing, Ecological Indicators, 20, 57-64.
Tian, W., Qiao, K., Yu, H., Bai, J., Jin, X., Liu, Q., Zhao, J. (2016) Remediation of aquaculture water in the estuarine wetlands using coal cinder-zeolite balls/reed wetland combination strategy, Journal of Environmental Management, 181, 261-268.
Tran, D. V., Gabric, A., Cropp, R. (2015) Interannual variability in chlorophyll-a on the southern Queensland continental shelf and its relationship to ENSO, Journal of Sea Research, 106, 27-38.
Ungermanová, L., Kolaříková, K., Stuchlík, E., Senoo, T., Horecký, J., Kopáček, J., Chvojka, P., Tátosová, J., Bitušík, P., Fjellheim, A. (2014) Littoral macroinvertebrates of acidified lakes in the Bohemian Forest, Biologia, 69(9), 1190-1201.
U.S. E.P.A. (2011) National Wetland Condition Assessment: Field Operations Manual, EPA-843-R-10-001
VanKempen-Fryling, R. J., and Camper, A. K. (2017) Escherichia coli O157: H7 attachment and persistence within root biofilm of common treatment wetlands plants, Ecological Engineering, 98, 64-69.
Vermaat, J. E., Hellmann, F. A., van Teeffelen, A. J., van Minnen, J., Alkemade, R., Billeter, R., Beierkuhnlein, C., Boitani, L., Cabeza, M., Feld, C. K., Huntley, B., Paterson, J., WallisDeVries, M. F. (2017) Differentiating the effects of climate and land use change on European biodiversity: A scenario analysis. Ambio, 46(3), 277-290.
Vodyanitskii, Y. N. (2016) Standards for the contents of heavy metals in soils of some states, Annals of Agrarian Science, 14(3), 257-263.
Vymazal, J. and Kröpfelová, L. (2008) Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow, Springer Science & Business Media. 566.
Vymazal, J. (2010) Constructed wetlands for wastewater treatment: five decades of experience, Environmental Science & Technology, 45(1), 61-69.
Vymazal, J. (2013a) Emergent plants used in free water surface constructed wetlands: a review, Ecological Engineering, 61, 582-592.
Vymazal, J. (2013b) The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development, Water Research, 47(14), 4795-4811.
Vymazal, J. (2014) Constructed wetlands for treatment of industrial wastewaters: a review, Ecological Engineering, 73, 724-751.
Wallace, J., Champagne, P., Hall, G. (2016) Multivariate statistical analysis of water chemistry conditions in three wastewater stabilization ponds with algae blooms and pH fluctuations, Water Research, 96, 155-165.
Wallisdevries, M. F., Van Swaay, C. A., Plate, C. L. (2012) Changes in nectar supply: a possible cause of widespread butterfly decline, Current zoology, 58(3), 384-391
WallisDeVries, M. F. and Bobbink, R. (2017) Nitrogen deposition impacts on biodiversity in terrestrial ecosystems: Mechanisms and perspectives for restoration, Biological Conservation (In press)
Wan B., Yan Y., Tang Y., Bai Y., Liu F., Tan W., Huang, Q., Feng, X. (2017) Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles, Chemosphere, 176, 255-265.
Wang, L. and Li, T. (2015) Effects of seasonal temperature variation on nitrification, anammox process, and bacteria involved in a pilot-scale constructed wetland, Environmental Science and Pollution Research, 22(5), 3774-3783.
Wang, M., Yang, Y., Chen, Z., Chen, Y., Wen, Y., Chen, B. (2016) Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae, Bioresource Technology, 222, 130-138.
Weis, J. S. and Weis, P. (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration, Environment International, 30(5), 685-700.
Weking, S., Hermann, G., Fartmann, T. (2013) Effects of mire type, land use and climate on a strongly declining wetland butterfly, Journal of Insect Conservation, 17(6), 1081-1091.
Whelan, C. J. Şekercioğlu, Ç. H., Wenny, D. G. (2015) Why birds matter: from economic ornithology to ecosystem services, Journal of Ornithology, 156(1), 227-238.
Whitford, V., Ennos, A.R., Handley, J. F. (2001) City form and natural processes:indicators for the ecological performance of urban areas and their applicationto Merseyside, UK. Landscape Urban Plann. 20 (2), 91-103.
Wollheim, W. M., Harms, T. K., Peterson, B. J., Morkeski, K., Hopkinson, C. S., Stewart, R. J., Gooseff, M. N. Briggs, M. A. (2014) Nitrate uptake dynamics of surface transient storage in stream channels and fluvial wetlands, Biogeochemistry, 120(1-3), 239-257.
Wu, H., Lin, L., Zhang, J., Guo, W., Liang, S., Liu, H. (2016a) Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent, Bioresource Technology, 219, 768-772
Wu, S., Carvalho, P. N., Müller, J. A., Manoj, V. R., Dong, R. (2016b) Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators, Science of the Total Environment, 541, 8-22.
Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., Liu, H. (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation, Bioresource Technology, 175, 594-601.
Wu, S., Kuschk, P., Brix, H., Vymazal, J., Dong, R. (2014) Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review, Water Research, 57, 40-55.
Xiao, Y., Huang, Z., Lu, X. (2015) Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China, Ecological Engineering, 82, 381-389.
Xu, J., Zhang ,J., Xie, H., Li, C., Bao, N., Zhang, C., Shi, Q. (2010) Physiological responses of Phragmites australis to wastewater with different chemical oxygen demands, Ecological Engineering, 36(10), 1341-1347.
Yin, X., Zhang, J., Hu, Z., Xie, H., Guo, W., Wang, Q., Ngo, H. H., Liang, S., Lu, S., Wu, W. (2016) Effect of photosynthetically elevated pH on performance of surface flow-constructed wetland planted with Phragmites australis, Environmental Science and Pollution Research, 23(15), 15524-15531.
Zhang, C., Yin, Q., Wen, Y., Guo, W., Liu, C., Zhou, Q. (2016) Enhanced nitrate removal in self-supplying carbon source constructed wetlands treating secondary effluent: The roles of plants and plant fermentation broth, Ecological Engineering, 91, 310-316.
Zhang, D., Ni, W., Gersberg, R. M., Ng, W. J., Tan, S. K. (2015) Performance Characterization of Pharmaceutical Removal by Horizontal Subsurface Flow Constructed Wetlands Using Multivariate Analysis, CLEAN–Soil, Air, Water, 43(8), 1181-1189.
Zhang, L., Mu, L., Xiong, Y., Xi, B., Li, G., Li, C. (2015) The development of a natural heating technology for constructed wetlands in cold climates, Ecological Engineering, 75, 51-60.
Zhao, Y., Shan, B., Tang, W., Zhang, H. (2015) Nitrogen mineralization and geochemical characteristics of amino acids in surface sediments of a typical polluted area in the Haihe River Basin, China, Environmental Science and Pollution Research, 22(22), 17975-17986.
Zhao, Z., Song, X., Wang, Y., Wang, D., Wang, S., He, Y., Wang, J. (2016) Effects of algal ponds on vertical flow constructed wetlands under different sewage application techniques, Ecological Engineering, 93, 120-128.
Zhimiao, Z., Xinshan, S., Yanping, X., Yufeng, Z., Zhijie, G., Fanda, L.,Yi D., Wei, W., Tianling, Q. (2016) Influences of seasons, N/P ratios and chemical compounds on phosphorus removal performance in algal pond combined with constructed wetlands, Science of the Total Environment, 573, 906-914.
Zhou, N., Zhao, S., Shen, X. (2014) Nitrogen cycle in the hyporheic zone of natural wetlands, Chinese Science Bulletin, 59(24), 2945-2956.
王美雪,2012,應用多變量統計方法評估高雄地下水特性,國立中山大學環境工程研究所,碩士論文,高雄。
李威翰,2014,人工濕地微藻與環境因子關聯性分析及其產製生質柴油之研究,大仁科技大學環境管理研究所,碩士論文,屏東。
李錦育,2010,生態工程,五南圖書,台北市。
行政院國家永續發展委員會,2016,永續發展政策綱領。
行政院農業委員會林務局,2012,水梯田濕地生態保存及復育補貼政策研究計畫。
行政院環境保護署,2006,水質自然淨化工法操作維護彙編。
行政院環境保護署,2015,2015年中華民國國家溫室氣體清冊報告。
林俞辛,2015,垂直流人工濕地模槽系統中厭氧氨氧化作用之可行性評估,國立中山大學海洋環境工程學系,碩士論文,高雄。
林欽榮,2006,聽濕地在唱歌,新自然主義,台北市。
莊淳翔,2013,極端氣候對舊鐵橋人工濕地之變遷探討,國立中山大學環境工程研究所,碩士論文,高雄。
高雄市環保局,2016,105年度國家重要濕地(大樹舊鐵橋人工濕地)保育計畫期末報告書,高雄。
高雄市政府工務局,2006,聽濕地在唱歌,新自然主義,台北。
高雄縣政府水利局,2002,高屏溪右岸高屏大橋至舊鐵橋高灘地綠美化工程規劃設計整體規劃定案報告書。
黃國勛,2016,大鵬灣底棲無脊椎動物與水質關係之探討,嘉南藥理大學環境工程與科學系,碩士論文,台南。
陳世偉、吳俊毅、高志明、張有義,2006,高屏溪舊鐵橋人工濕地水質淨化功能探討:一個親水的自然系統,中華民國環境保護學會學刊,第二十九卷,第二期。
陳有祺,2005a,濕地生態工程,滄海書局,台中市。
陳治勛,2005b,濕地水文系統之研究-以屏東科技大學生態池為例,國立屏東科技大學土木工程研究所,碩士論文,屏東。
陳琮翰,2015,應用多變量分析方法對接觸濾床淨化河川水質之研究,國立高雄第一科技大學環境與安全衛生工程研究所,碩士論文,高雄。
陳瑞惠,2016,巴黎會議重要談判結果與可能影響,經濟部節能減碳推動辦公室。
葉柏緯,2014,伏流水對魚類棲地之影響-以五溝水湧泉濕地為例,國立成功大學水利及海洋工程學系,碩士論文,台南。
劉曜霆,2016,路網開發形態與濕地生態環境鳥類棲息地影響研究-以茄萣濕地為例,東海大學建築學系,碩士論文,台中。
鄧先志,2013,不同植物種於地下流式人工濕地串接水生植物系統對養豬廢水放流水處理效率之研究,國立中山大學海洋環境工程研究所,碩士論文,高雄。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.12.71.237
論文開放下載的時間是 校外不公開

Your IP address is 3.12.71.237
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code