Responsive image
博碩士論文 etd-0715117-104620 詳細資訊
Title page for etd-0715117-104620
論文名稱
Title
可快速檢測有機磷與胺基甲酸鹽之微型農藥感測器研發
Development of a Rapid EGFET-based Pesticides Microsensor for Organophosphorus and Carbamate Detection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-27
繳交日期
Date of Submission
2017-08-15
關鍵字
Keywords
有機磷、胺基甲酸鹽、微型農藥感測器、微機電系統、延伸式閘極場效電晶體、銠金雙金屬奈米粒子、乙醯膽鹼酯酶
organophosphorus, carbamate, acetylcholinesterase enzyme, AuRh bimetallic nanocrystals, extended-gate field-transistor, pesticides microsensor
統計
Statistics
本論文已被瀏覽 5655 次,被下載 22
The thesis/dissertation has been browsed 5655 times, has been downloaded 22 times.
中文摘要
蔬果農藥殘留為近年來不斷發生的食安問題之一,過量的殘留農藥經食用而累積於人體內,容易造成神經系統疾病而危害人體健康。在消費者食用蔬果前,若能快速檢測蔬果上之農藥殘留量是否符合國家法規所訂定的最大殘留量,將可大幅減少食安問題。然而目前農藥殘留檢測技術是以氣相層析法與液相層析儀法為主,雖具有高精準度,但此類檢測儀器由於體積龐大、價格昂貴以及檢測時間冗長等缺點,不利於民眾於食用蔬果前及時檢測。因此本論文致力於開發可快速檢測有機磷及胺基甲酸鹽之微型農藥感測器,以改善上述缺點。
本論文以微機電系統技術製作延伸式閘極場效電晶體,並使用交聯法將乙醯膽鹼酯酶固定於延伸閘極上,利用有機磷對乙醯膽鹼酯酶活性抑制之原理進行有機磷之農藥檢測;而胺基甲酸鹽之農藥檢測則選用銠金雙金屬奈米粒子作為其感測薄膜,因銠金雙金屬奈米粒子對胺基甲酸鹽具有高度專一性。本論文主要製程步驟包括四道黃光微影及四次薄膜沉積製程以製作出延伸式閘極場效電晶體,另外利用兩道黃光微影及兩次沉積薄膜完成封裝晶片之製作。最後,本論文將探討有機磷與胺基甲酸鹽感測薄膜之感測特性。
本論文所開發出微型農藥感測器尺寸為12 mm × 10 mm × 0.5 mm,延伸閘極感測面積為0.8 mm" × 0.8 mm。" 根據量測結果顯示,於0.001 ppm ~ 10 ppm濃度量測範圍下,有機磷(甲基巴拉松)感測靈敏度為37.5 mV/dec、線性度為0.985及反應時間為300秒;胺基甲酸鹽(加保利)感測靈敏度為68.0 mV/dec、線性度為0.982及反應時間為120秒。由上述量測結果顯示,本論文所開發之有機磷與胺基甲酸鹽微型農藥感測器具有體積小、感測靈敏度高、線性度高及反應時間快之優點,未來可應用於蔬果農藥殘留快速檢測。
Abstract
In recent years, the food safety issues have been continuously to occur in the world, such as pesticide residues. The accumulation of pesticide residue in human body via fruits and vegetable’s consumption is likely to cause nervous system disorders, and affect human health. However, if it is possible to develop rapid methods for checking the pesticide residues on fruits and vegetables to be within the maximum residue’s levels of national regulations, prior to consumers eat fruits and vegetables, that can significantly reduce the problem of food security. Presently, the most common pesticide detection techniques are gas chromatograph and liquid chromatograph. Their disadvantages of huge size, high fabrication cost, long detection time and without real-time monitoring function are not conducive to rapid detection. To improve these disadvantages, this thesis aim to develop a rapid EGFET-based pesticides microsensor for organophosphorus and carbamate Detection.
In this thesis, an extended-gate field-transistor (EGFET) is developed utilizing micro-electromechanical system (MEMS) technology. Acetylcholinesterase enzyme (AChE) is immobilized by cross-linking method on the extended gate electrode of the EGFET for organophosphorus detection. AuRh bimetallic nanocrystals are selected as the ion selective membrane for carbamate detection because of their ultra-specific responses toward carbamate pesticides. The main processing steps of the EGFET device in this study involve four photolithographic and four thin-film deposition processes, as well as two photolithographic and two thin-film deposition processes to fabricate the packaging chip.
The size of the proposed EGFET-based pesticides microsensor is 12 mm × 10 mm × 0.5 mm and the sensing area is 0.8 mm × 0.8 mm. Based on the measurement results of the pesticides microsensors, the sensitivity, sensing linearity and response time of the organophosphorus microsensor are 37.5 mV/dec, 0.985 and 300 sec, respectively, as the sensing pesticides concentration varies from 0.001 ppm to 10 ppm. At the same situations, the carbamate (68.0 mV/dec, 0.982 and 120 sec) were also presented in this paper.
目次 Table of Contents
論文授權書 i
誌謝 ii
摘 要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi

第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1 光學式農藥感測器 4
1.2.2 壓電式農藥感測 4
1.2.3 離子選擇電極 5
1.2.4 離子感測場效電晶體 5
1.2.5 延伸式閘極感測場效電晶體 7
1.3 實驗方法與論文架構 8

第二章 微型農藥感測器之原理與介紹 10
2.1 延伸式閘極場效電晶體原理介紹 10
2.1.1 能斯特方程式 10
2.1.2 吸附鍵結模型 11
2.1.3 延伸式閘極場效電晶體工作原理 12
2.2 有機磷感測機制 14
2.2.1 乙醯膽鹼與乙醯膽鹼酯酶簡介 14
2.2.2 有機磷介紹 15
2.2.3 有機磷感測機制 15
2.3 胺基甲酸鹽感測機制 17
2.3.1 胺基甲酸鹽介紹 17
2.3.2 胺基甲酸鹽感測機制 17

第三章 微型農藥感測器之設計與製作 19
3.1 延伸式閘極感測場效電晶體元件 19
3.1.1 延伸式閘極感測場效電晶體結構與光罩布局設計 19
3.1.2 微型感測器封裝晶片光罩布局設計 22
3.2 微型農藥感測器之設計與製程整合 22
3.2.1 延伸式閘極場效電晶體之製作 23
3.2.2 封裝晶片之製作 29
3.2.3 延伸式閘極場效電晶體與封裝晶片上蓋之封裝整合 33
3.3 有機磷感測薄膜製配 34
3.3.1 實驗藥品及材料 34
3.3.2 感測薄膜調配 35
3.4 胺基甲酸鹽感測薄膜製配 35
3.4.1 實驗藥品及材料 35
3.4.2 感測薄膜調配 36

第四章 實驗結果與討論 38
4.1 延伸式閘極場效電晶體特性量測與分析 39
4.2 微型農藥感測器之特性量測與分析 41
4.2.1 有機磷感測靈敏度及線性度分析 42
4.2.2 胺基甲酸鹽感測靈敏度及線性度分析 44
4.3 傳統與微型農藥感測器之比較 47

第五章 結論與未來展望 48
5.1 結論 48
5.2 未來展望 49

參考文獻 51
參考文獻 References
1. A. Mulchandani, W. Chen, P. Mulchandani, J. Wang and K. R. Rogers, “Biosensors for direct determination of organophosphate pesticides,” Biosens. Bioelectron. 16, 225-230 (2001).
2. P. Moris, I. Alexandre, M. Roger and J. Remacle, “Chemiluminescence assays of organophosphorus and carbamate pesticides,” Anal. Chim. Acta 302, 53-59 (1995).
3. W. J. Donarski, D. P. Dumas, D. P. Heitmeyer, V. E. Lewis and F. M. Raushel, “Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta,” Biochem. 28, 4650-4655 (1989).
4. S. Chapalamadugu and G. R. Chaudhry, “Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates,” Crit. Rev. Biotechnol. 12, 357-389 (1992).
5. C. Tran-Minh , P. C. Pandey and S. Kumaran, “Studies on acetylcholine sensor and its analytical application based on the inhibition of cholinesterase,” Biosens. Bioelectron. 5, 461-471 (1990).
6. C. Cremisini, S. D. Sario, J. Mela, R. Pilloton and G. Palleschi, “Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase based biosensor,” Anal. Chim. Acta 311, 273-280 (1995).
7. K. Steenland, “Chronic neurological effects of organophosphate pesticides,” Br. Med. J. 312, 1312-1313(1996).
8. G. A. Jamal, “Neurological syndromes of organophosphorus compounds,” Adverse Drug React. Toxicol. Rev. 16, 133-170(1997).
9. D. E. Ray, “Chronic effects of low level exposure to anticholinesterases a mechanistic review,” Toxicol. Lett. 102-103, 527-533 (1998).
10. 衛生福利部食品藥物管理署,農藥殘留容許量標準,Available online: https://consumer.fda.gov.tw/Law/PesticideList.aspx?nodeID=520
11. S. Lacorte, C. Molina and A. Barcelo, “Screening of organophosphorus pesticides in environmental matrices by various gas chromatographic techniques,” Anal. Chim. Acta 281, 71-84 (1993).
12. Y. Pico, A. J. Louter, J. J. Vreuls and U. A. Brinkman, “On-line trace-level enrichment gas chromatography of triazine herbicides, organophosphorus pesticides, and organosulfur compounds from drinking and surface waters,” Analyst 119, 2025-2031 (1994).
13. T. Hamers, M. G. D. Smit, A. J. Murk and J. H. Koeman, “Biological and chemical analysis of the toxic potency of pesticides in rainwater,” Chemosphere 45, 609-624 (2001).
14. J. M. Abad, F. Pariente, L. Hernandez, H. D. Abruna and E. Lorenzo “Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor,” Anal. Chem. 70, 2848-2855 (1998).
15. A. N. Ivanov, G. A. Evtugyn, R. E. Gyurcsanyi, K. Toth and H. C. Budnikov, “Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination,” Anal. Chim. Acta 404, 55-65 (2000).
16. M. S. Frant, “Historical perspective. History of Early Commercialization of Ion-Selective Electrodes,” Analyst 119, 2293-2301 (1994).
17. P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng. 17, 70-71 (1970).
18. P. Bergveld, “Thirty years of ISFETOLOGY what happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuators B: Chem. 88, 1-20 (2003).
19. C. J. Jorquera, O. Jahir and B. Antoni, “ISFET based microsensors for environmental monitoring,” Sensors 10, 61-83 (2010).
20. J. Van Der Spiegel, I. Lauks, P. Chan and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. Actuators 4, 291-298 (1983).
21. J. Schoning and A. Poghossian, “Recent advances in biologically sensitive field-effect transistors,” Analyst 127, 1137-1151 (2002).
22. E. M. Guerra, G. R. Silva and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol–gel method,” Solid State Sci. 11, 456-460 (2009).
23. L.-L. Chi, J.-C. Chou, W.-Y. Chung, T.-P. Sun and S.-K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys. 63, 19-23 (2000).
24. J.-L. Chiang, S.-S. Jhan, S.-C. Hsieh and A.-L. Huang, “Hydrogen ion sensors based on indium tin oxide thin film using radio frequency sputtering system,” Thin Solid Films 517, 4805-4809 (2009).
25. L.-T. Yina, Y.-T. Linb, Y.-C. Leua and C.-Y. Hua, “Enzyme immobilization on nitrocellulose film for pH-EGFET type biosensors,” Sens. Actuators B: Chem. 148, 207-213 (2010).
26. J.-C. Chen, J.-C. Chou, T.-P. Sun and S.-K. Hsiung, “Portable urea biosensor based on the extended-gate field effect transistor,” Sens. Actuators B: Chem. 91, 180-186 (2003).
27. M. Kamahori, Y. Ishige and M. Shimoda, “A novel enzyme immunoassay based on potentiometric measurement of molecular adsorption events by an extended-gate field-effect transistor sensor,” Biosens. Bioelectron. 22, 3080-3085 (2007).
28. B. Johan, A. Ivaska, and A. Lewenstam, “Potentiometric Ion Sensors,” Chem. Rev. 108, 329-351 (2008).
29. D. E. Yates, S. Levine and T. W. Healy, “Site-binding mode of the electrical double layer at the oxide/water interface,” J. Chem. Soc. Faraday Trans. 70, 1807-1818 (1974).
30. S. Koji, D. Siswanta, O. Takeshi and A. Tsuyoshi, “Design and synthesis of a more highly selective ammonium ionophore than nonactin and its application as an ion sensing component for an ion-selective electrode,” Anal. Chem. 72, 2200-2205 (2000).
31. H. Schulze, S. Vorlovıa, F. Villatte, T. T. Bachmann and R.D. Schmid, “Design of acetylcholinesterases for biosensor applications,” Biosens. Bioelectron. 18, 201-209 (2003).
32. D. Lu, J. Wang, L. Wang, D. Du, C. Timchalk, R. Barry and Y. Lin, “A novel nanoparticle-based disposable electrochemical immunosensor for diagnosis of exposure to toxic organophosphorus agents”, Adv. Funct. Mater. 21, 4371-4378 (2011).
33. B. B. Narakathu, W. Guo, S. O. Obare and M. Z. Atashbar, “Novel approach for detection of toxic organophosphorus compounds”, Sens. Actuators B: Chem. 158, 69-74 (2011).
34. S. Laschi, D. Ogonczyk, I. Palchetti and M. Mascini, “Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors,” Enzyme Microb. Technol. 40, 485-489 (2007).
35. O. Shulga, J. R. Kirchhoff, “An acetylcholinesterase enzyme electrode stabilized by
i. an electrodeposited gold nanoparticle layer,” Electrochem. Commun. 9, 935-940 (2007).
36. S. Laschi, D. Ogonczyk, I. Palchetti, M. Mascini, “ Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors,” Enzyme Microb. Technol. 40, 485-489 (2007).
37. C.-Y. Cheng, S. Thiagarajan and S.-M. Chen, “Electrochemical fabrication of AuRh nanoparticles and their electroanalytical applications,” Int. J. Electrochem. Sci. 6, 1331-1341 (2011).
38. X. Ma, R. Lin, R. Y. Ofoli, Z. Mei and J. E. Jackson, “Structural and morphological evaluation of Ru-Pd bimetallic nanocrystals,” Mater. Chem. Phys. 173, 1-6, (2016).
39. A. L. Querejeta, M. C. Barrio, S. G. Garcia, “Electrochemical synthesis of RhPd bimetallic nanoparticles onto a glassy carbon surface,” J. Electroanal. Chem. 778, 98-102 (2016).
40. Z. F. Chen, Y. Zhang, J. Q. Xu, P. C. Xu and X. X. Li, “Non-enzymatic specific detection of carbamate pesticides based on monodisperse gold-rhodium alloy nanocrystals,” in Proc. 18th Int. Conf. on Solid-sate Sensors, Actuators and Microsystems (TRANSDUCERS’ 2015), pp. 1503-1506, Alaska, USA (2015).
41. 阮呂軍昇,運用微機電系統技術開發鈉/鈣/銨/氯多重離子微型感測晶片,國立中山大學電機工程學系碩士論文(2013)。
42. T. Liu, H. Su, X. Qu, P. Ju, L. Cui and S. Ai, “Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide–gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides,” Sens. Actuators B 160, 1255–1261 (2011).
43. Z. Zheng, Y. Zhou, X. Li, S. Liu and Z. Tang, “Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots,” Biosens. Bioelectron. 26, 3081-3085 (2011).
44. M. Musameh, M. R. Notivoli, M. Hickey, C. P. Huynh, S. C. Hawkins, J. M. Yousef and I. L. Kyratzis, “Carbon nanotube-Web modified electrodes for ultrasensitive detection of organophosphate pesticides,” Electrochim. Acta 101, 209-215 (2013).
45. D. Du, M. Wang, J. Cai, Y. Qin, and A. Zhang, “One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor,” Sens. Actuators B: Chem. 143, 524-529, (2010).
46. F. Arduini, F. Ricci, C. S. Tuta, D. Moscone, A. Amine and G. Palleschi, “Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on prussian blue-modified screen-printed electrode,” Anal. Chim. Acta 580, 155-162 (2006).
47. N. Kim, I.-S. Park, D.-K. Kim, “High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor,” Biosens. Bioelectron. 22, 1593-1599 (2007).
48. T. Liu, H. Su, X. Qu, P. Ju, L. Cui and S. Ai, “Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide–gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides,” Sens. Actuators B 160, 1255–1261 (2011).
49. Y. Song, M. Zhang, L. Wang, L. Wan, X. Xiao, S. Ye and J. Wang, “A novel biosensor based on acetylecholinesterase/prussian blue-chitosan modified electrode for detection of carbaryl pesticides,” Electrochim. Acta 56, 7267-7271 (2011).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code