Responsive image
博碩士論文 etd-0715117-114241 詳細資訊
Title page for etd-0715117-114241
論文名稱
Title
雙邊載子蒐集之雙面照光環繞式射極太陽能電池
Both Side Collection on Emitter Wrap Through Bifacial Solar Cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-27
繳交日期
Date of Submission
2017-08-15
關鍵字
Keywords
雙面照光、載子移動路徑、雙邊載子蒐集、環繞式射極
both-side collection, carrier transport length, double-sided emitter, bifacial
統計
Statistics
本論文已被瀏覽 5705 次,被下載 41
The thesis/dissertation has been browsed 5705 times, has been downloaded 41 times.
中文摘要
在本篇論文中,我們提出了一具有雙邊載子蒐集之雙面照光環繞式射極太陽能電池 (Both Side Collection on Emitter Wrap Through Bifacial Solar Cell, BSC-EWT)。在此研究中,我們以雙邊射極概念作為主軸,可帶來較佳的載子蒐集,增加短路電流密度,並討論了相關架構,與之比較提出優化架構。雙邊射極架構提降低載子行進至電極之路徑,可增加載子蒐集效率並減少複合機率發生,並可使用較低生命期之基板,例如:p-type Si或mc-Si,在低成本考量下達到高效率表現。為了探討此架構之特性,使用TCAD模擬軟體來探討各種架構的表現並且進行幾何與製程參數的校正。首先,具有雙邊射極的EWT (Emitter Wrap Through)架構比起BC-BJ (Back contact and back junction)效率提升了3.87 %,達到了21.16 %。隨後,當雙邊射極皆有電極接觸時形成了BOSCO (Both Side Contact and Collection)架構,少數載子收集效率達到最佳狀態,與EWT相比效率提升了2.06 %。然而,儘管少數載子收集效率已然足夠,多數載子仍需靠著橫向移動到達底部電極,使得串聯電阻提升,降低了填充因子與效率。為了再次提升轉換效率,我們將背面Al-BSF也移到前表面增設,形成上下對稱式架構,可降低多數載子的擴散路徑,模擬結果顯示可改善串聯電阻與填充因子。儘管BOSCO有較高的短路電流密度,BSC-EWT所提升的填充因子與開路電壓,仍使得轉換效率達到最高值22.92 %。最後,比起沒有雙邊載子蒐集功能的BC-BJ,我們的BSC-EWT效率提升了12.5 %。於雙面照光方面,也發揮了架構的優點,電池背部在額外的光源接收下,效率增益的幅度較高,比起其他架構,較為適合於雙面照光應用。
Abstract
We propose a symmetrical solar cell structure which has both emitters and Al-SFs in the both sides. They can enhance the effect of the both-side collection and increase the JSC. The comparison between the other cells also demonstrate the advantage of our new BSC-EWT (Both Side Collection on Emitter Wrap Through) solar cell. The both-sided emitter can lower carrier transport lengths in the base which suppress the recombination effect. The both-side collection allow to employ low lifetime material, such as p-type Si or mc-Si, which can achieve high efficiency and low cost at the same time. By using the TCAD simulator with carefully calibration, we investigate the behavior of these cells. First, the EWT (Emitter Wrap Through) has double-sided emitters therefore the conversion efficiency improves 3.87 % compared with BC-BJ (Back contact and back junction), but it still needs to promote. When the both-side contacts are set up in the EWT, which is so-called BOSCO (Both Side Contact and Collection), the collection of minority carrier has been promoted perfectly and improves the efficiency for 2.06 % again compared to EWT. In order to further improve the FF by lower the series resistance, our new BSC-EWT has proposed double-sided emitters and Al-SFs structure that can reduce the current paths. Even if there is a small reduction of JSC to BSC-EWT, the increments of FF contribute the efficiency significantly compared with BOSCO. Finally, the BSC-EWT achieve highest efficiency of 22.92 %, which improved 12.5 % compared to that of the original BC-BJ. Moreover, the bifacial testing shows that our BSC-EWT with double-sided emitters and both-side contacts is beneficial for bifacial application.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 xi
第一章、導論 1
1.1. 研究背景 1
1.2. 動機 6
第二章、元件製作 9
2.1. 模擬元件 9
2.2. 元件實作 12
第三章、模擬結果與討論 14
3.1. 傳統太陽能電池架構 15
3.2. 具有雙邊載子蒐集功能之環繞式射極太陽能電池 17
3.2.1. 射極之覆蓋率優化 20
3.2.2. 表面電場區域(Surface Field, SF)之覆蓋率優化 25
3.2.3. 各區域摻雜濃度優化 28
3.2.4. 基板參數優化 34
3.2.5. 最終優化結果 40
3.3. 各種架構之比較與雙面照光應用 41
3.3.1. 各種架構之效率表現模擬 41
3.3.2. 具有雙邊載子蒐集功能之環繞式射極太陽能電池的雙面照光模擬 43
3.3.3. 各種架構之雙面照光模擬 46
3.3.4. 溫度對於太陽能電池之影響 50
3.3.5. 鈍化層對於太陽能電池的影響 53
3.4. 實作量測與結果討論 56
第四章、結論與未來展望 60
4.1. 結論 60
4.2. 未來展望 62
參考文獻 63
論文著述 70
參考文獻 References
[1] M. Fischer, “The 7th edition of the International Technology Roadmap for Photovoltaics (ITRPV) - Current trends and future challenges in c-Si PV,” in Proc. 26th PV Sol. Energy Conf., 2016.
[2] T. Dullweber, S. Gatz, H. Hannebauer, T. Falcon, R. Hesse, J. Schmidt, and R. Brendel, “19.4 %-efficient large area rear-passivated screen-printed silicon solar Cells,” Physica Status Solidi, vol. 5, no. 4, pp. 147-149, 2011.
[3] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., vol. 25, no. 5, pp. 676–676, 1954.
[4] J. M. Gee, W. K. Schubert, and P. A. Basore, “Emitter wrap-through solar cell,” in Proc. Rec. 23rd IEEE Photovoltaic Spec. Conf., Louisville, KY, USA, 1993, pp. 265–270.
[5] G. Willeke and P. Fath, “The POWER silicon solar cell concept,” in Proc. 12th Eur. Photovoltaic Solar Energy Conf., Amsterdam, The Netherlands, 1994, pp. 766–768.
[6] R. N. Hall and T. J. Soltys, “Polka dot solar cell,” in Proc. 14th IEEE Photovoltaic Spec. Conf., San Diego, CA, USA, 1980, pp. 550–553.
[7] I. Chambouleyron and Y. Chevalier, “Silicon double solar cell,” in Proc. Photovoltaic Solar Energy Conf., Luxembourg, 1977, pp. 967–976.
[8] A. Luque, A. Cuevas, and J. M. Ruiz, “Double-sided n+-p-n+ solar cell for bifacial concentration,” Solar Cells, vol. 2, no. 2, pp. 151–166, 1980.
[9] T. S. Boscke, D. Kania, A. Helbig, C. Schollhorn, M. Dupke, P. Sadler, M. Braun, T. Roth, D. Stichtenoth, T. Wutherich, R. Jesswein, D. Fiedler, R. Carl, J. Lossen, A. Grohe, and H.-J. Krokoszinski, “Bifacial n-Type Cells With >20 % Front-Side Efficiency for Industrial Production,” IEEE J. Photovoltaics, vol. 3, no. 2, pp. 674-677, 2013.
[10] S. Sepeai, S. L. Cheow, M. Y. Sulaiman, K. Sopian, and S. H. Zaidi, “Fabrication and characterization of Al-BSF bifacial solar cell,” in Proc. 34th IEEE Photovoltaic Spec. Conf., 2013, pp.2664-2668.
[11] J.-B. Heng, J. Fu, B. Kong, Y. Chae, W. Wang, Z. Xie, A. Reddy, K. Lam, C. Beitel, C. Liao, C. Erben, Z. Huang, and Z. Xu, “>23 % High-Efficiency Tunnel Oxide Junction Bifacial Solar Cell With Electroplated Cu Gridlines,” IEEE J. Photovoltaics, vol. 5, no. 1, pp. 82-86, 2015.
[12] T. Soderstroml, Y. Yaol, R. Grischkel, M. Gragertl, B. Demaurexl, B. Strahm, P. Papet, H. Mehlich, M. Koenig, A. Waltinger, J. Zaho, J. Krause, “Low cost high energy yield solar module lines and its applications,” in Proc. 42th Photovoltaic Spec. Conf., 2015.
[13] C. Kranz, B. Wolpensinger, R. Brendel, and T. Dullweber, “Analysis of Local Aluminum Rear Contacts of Bifacial PERC+ Solar Cells,” IEEE J. Photovoltaics, vol. 6, no. 4, pp. 830-836, 2016.
[14] T. Dullweber, C. Kranz, R. Peibst, U. Baumann, H. Hannebauer, A. Fulle, S. Steckemetz, T. Weber, M. Kutzer, M. Muller, G. Fischer, P. Palinginis, and H. Neuhaus, “PERC+ : industrial PERC solar cells with rear Al grid enabling bifaciality and reduced Al paste consumption,” in Proc. 31th Eur. PV Sol. Energy Conf., 2015, pp. 1487-1498.
[15] S. deWolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: A review,” Green, vol. 2, no. 1, pp. 7–24, 2012.
[16] A. Edler, P. Lill, M. Dahlinger, M. Eberspacher, V. D. Mihailetchi, C. Comparrotto, R. Harney, and R. Kopecek, “Bifacial n-type solar cell with selective boron emitter,” in Proc. 28th Eur. PV Sol. Energy Conf., 2013, pp. 967–970.
[17] S. Gall, A. Lanterne, S. Manuel, V. Sanzone, R. Cabal, Y. Veschetti, A. Bettinelli, H. Robin, P. Lefillastre, and C. Gillot, “High efficient industrial N-type technology : From cell to module,” in Proc. 28th Eur. PV Sol. Energy Conf., 2013, pp. 695–698.
[18] F. Fertig, J. Greulich, K. Krauß, F. Clement, D. Biro, R. Preu, and S. Rein, “The BOSCO Solar Cell: Simulation and Experiment,” IEEE J. Photovoltaics, vol. 4, no. 5, pp. 1243-1251, 2014.
[19] F. Fertig, , K. Krauß, J. Greulich, F. Clement, D. Biro, R. Preu, S. Rein, “The BOSCO Solar Cell: Double-sided Collection and Bifacial Operation,” Energy Procedia, vol. 55, pp. 416-424, 2014.
[20] J. Schmidt, A. G. Aberle, and R. Hezel, “Investigation of carrier lifetime instabilities in CZ grown silicon,” in Proc. 26th IEEE Photovoltaic Spec. Conf., 1997, pp. 13–18.
[21] G. Coletti, Y. Wu, G. Janssen, J. Loffler, B. B. van Aken, F. Li, Y. Shen, W. Yang, J. Shi, G. Li, Z. Hu, and J. Xiong, “20.3 % MWT Silicon Heterojunction Solar Cell—A Novel Heterojunction Integrated Concept Embedding Low Ag Consumption and High Module Efficiency,” IEEE J. Photovoltaics, vol. 5, no. 1, pp. 55-60, 2014.
[22] N. Guillevina, B. J. B. Heurtaulta, B. B. van Akena, I. J. Bennetta, M. J. Jansena, L. Berkevelda, L. J. Geerligsa, A. W. Weebera, J. H. Bultmana, Z. Hu, G. Li, W. Zhao, J. Wang, Z. Wang, Y. Chen, Y. Shen, J. Chen, B. Yu, S. Tian, J. Xiong, “High Efficiency n-Type Metal Wrap through Cells and Modules,” Energy Procedia, vol. 27, pp. 610-616, 2012.
[23] S.-Y. Chen, C.-P. Huang, B.-C. Chen, D.-C. Wu, W.-C. Hsu, and C.-H. Du, “New printing pattern design and processing of MWT solar cells for pilot-line,” in Proc. 35th IEEE Photovoltaic Spec. Conf., 2010, pp. 3498-3500.
[24] D. D. Smith, “Review of Back Contact Silicon Solar Cells for Low-Cost Application,” in Proc. 16th Eur. PV Sol. Energy Conf., 2013, pp. 695–698.
[25] F. Kiefer, C. Ulzhofer, T. Brendemuhl, N. P. Harder, R. Brendel, V. Mertens, S. Bordihn, C. Peters, and J. W. Muller, “High efficiency n-type emitter-wrap- through silicon solar cells,” IEEE J. Photovoltaics, vol. 1, no. 1, pp. 49-53, 2011.
[26] C. Ulzhofer, P. P. Altermatt, N. P. Harder, and R. Brendel, “Loss analysis of emitter-wrap-through silicon solar cells by means of experiment and three-dimensional device modeling,” J. Appl. Phys., vol. 107, no. 10, pp. 104509-1–104509-12, 2010.
[27] B. Thaidigsmann, A. Drews, T. Fellmeth, P. S. Cast, A. Wolf, F. Clement, R. Preu, and D. Biro, “Synergistic Effects of Rear-Surface Passivation and the Metal Wrap Through Concept,” IEEE J. Photovoltaics, vol. 2, no. 2, pp. 109-113, 2012.
[28] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7 % Record Efficiency HIT Solar Cell on Thin Silicon Wafer,” IEEE J. Photovoltaics, vol. 4, no. 1, pp. 96-99, 2014.
[29] A. Ingenito, S. L. Luxembourg, P. Spinelli, J. Liu, J. C. O. Lizcano, A. W. Weeber, O. Isabella, and M. Zeman, “Optimized Metal-Free Back Reflectors for High-Efficiency Open Rear c-Si Solar Cells,” IEEE J. Photovoltaics, vol. 6, no. 1, pp. 34-40, 2016.
[30] J. P. Singh, S. Guo, I. M. Peters, A. G. Aberle, and T. M. Walsh, “Comparison of Glass/Glass and Glass/Backsheet PV Modules Using Bifacial Silicon Solar Cells,” IEEE J. Photovoltaics, vol. 5, no. 3, pp. 783-791, 2015.
[31] U. A. Yusufoglu, T. M. Pletzer, L. J. Koduvelikulathu, C. Comparotto, R. Kopecek, and H. Kurz, “Analysis of the Annual Performance of Bifacial Modules and Optimization Methods,” IEEE J. Photovoltaics, vol. 5, no. 1, pp. 320-328, 2015.
[32] W. Neu, A. Kress, W. Jooss, P. Fath, E. Bucher, “Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization,” Sol. Energy Mater. Sol. Cells, vol. 74, pp. 139-146, 2002.
[33] F. Fertig, N. Wöhrle, J. Greulich, K. Krauß, E. Lohmüller, S. Meier, A. Wolf, and S. Rein, “Bifacial potential of single- and double-sided collecting silicon solar cells,” Photovoltaics Res. Appl., vol. 24, no. 6, 2016.
[34] E. V Kerschaver, C. Zechner, and J. Dicker, “Double sided minority carrier collection in silicon solar cells,” IEEE Trans. Electron Devices, vol. 47, no. 4, pp. 711-717, 2000.
[35] R. M. Swanson and R. A. Sinton, “High-Efficiency Silicon Solar Cells,” Adv. Sol. Energy, pp. 427-484.1, 1990.
[36] J. Dicker, J. O. Schumacher, W. Warta, and S. W. Glunz, “Analysis of one-sun monocrystalline rear-contacted silicon solar cells with efficiencies of 22.1%,” J. Appl. Phys., vol. 91, no. 7, pp. 4335-4343, 2002.
[37] E. V. Kerschaver, R. Einhaus, J. Szlufcik, J. Nijs, and R. Mertens, “A novel silicon solar cell structure with both external polarity contacts on the back surface,” in Proc. 2nd WCPVSEC, 1998, pp.1479-1482.
[38] A. G. Aberle, S. J. Robinson, A. Wang, J. Zhao, S. R. Wenham, and M. Green, “High‐efficiency silicon solar cells: Full factor limitations and non‐ideal diode behavior due to voltage‐dependent rear surface recombination velocity,” Photovoltaics Res. Appl., vol. 1, no. 2, pp. 133-143, 1993.
[39] S. C. Pritchard, K. R. McIntosh, P. P. Altermatt, and C. B. Honsberg, “A Comparison of Single Junction and Transistor Structure Solar Cells,” Solar, vol. 97, 1997.
[40] R. Guerrero-Lemus, R. Vega, T. Kim, A. Kimm, and L. E. Shephard, “Bifacial solar photovoltaics – A technology review,” Renew. Sust. Energ. Rev., vol. 60, pp. 1533-1549, 2016.
[41] T.-H. Huang (2015), “A New Interdigitated Nanopillar HIT Solar Cell by Using Silicon-Carbide-Based Window Layer,” MS dissertation, Kaohsiung:National Sun Yat Sen University, Department of Electrical Engineering, Taiwan.
[42] J.-Y. Wang (2013), “A Cd-free and ZnS based CIGS Solar Cell with a Wide-Bandgap InGaP Secondary Layer,” MS dissertation, Kaohsiung:National Sun Yat Sen University, Department of Electrical Engineering, Taiwan.
[43] W. Deng, D. Chen, Z. Xiong, P. J. Verlinden, J. Dong, F. Ye, H. Li, H. Zhu, M. Zhong, Y. Yang, Y. Chen, Z. Feng, and P. Altermatt, “20.8% PERC Solar Cell on 156 mm × 156 mm P-Type Multicrystalline Silicon Substrate,” IEEE J. Photovoltaics, vol. 6, no. 1, pp. 3-9, 2016.
[44] M. Padilla, B. Michl, N. Hagedorn, C. Reichel, S. Kluska, A. Fell, M. Kasemann, W. Warta, and M. C. Schubert, “Local Series Resistance Imaging of Silicon Solar Cells With Complex Current Paths,” IEEE J. Photovoltaics, vol. 5, no. 3, pp. 752-758, 2015.
[45] C. Duran (2012), “Bifacial Solar Cells: High Efficiency Design, Characterization, Modules and Applications,” PhD dissertation, Konstanz:Konstanz University, Department of Physics, Germany.
[46] L. Jiang, J. H. Lyou, S. Rane, E. A. Schiff, Q. Wang, and Q. Yuan, “Open-Circuit Voltage Physics in Amorphous Silicon Solar Cells,” Mat. Res. Soc. Symp. Proc., vol. 609, pp. 1-12, 2000.
[47] P. Singh, and N. M. Ravindra, “Temperature dependence of solar cell performance - an analysis,” Sol. Energy Mater. Sol. Cells, vol. 101, pp. 36-45, 2012.
[48] Y. Chen, Y. Yang, J. K. Marmon, X. Zhang, Z. Feng, P. J. Verlinden, and H. Shen, “Independent Al2O3/SiNx:H and SiO2/SiN x:H Passivation of p+ and n+ Silicon Surfaces for High-Performance Interdigitated Back Contact Solar Cells,” IEEE J. Photovoltaics, vol. 7, no. 1, pp. 51-57, 2016.
[49] I. Cesar, M. Lamers, I. Romijn, K. Bakker, C. Olson, D. O. Saynova, Y. Komatsu, and A. Weeber, “Energy Band Diagram near the Interface of Aluminum Oxide on p-Si Fabricated by Atomic Layer Deposition without/with Rapid Thermal Cycle Annealing Determined by Capacitance–Voltage Measurements,” e-J. Surf. Sci. Nanotech, vol. 10, pp. 22-28, 2012.
[50] S. Duttagupta, Z. Hameiri, T. Grosse, D. Landgraf, B. Hoex, and A. G. Aberle, “Dielectric Charge Tailoring in PECVD SiOx/SiNx and Application at the Rear of Al Local Back Surface Field Solar Cells," IEEE J. Photovoltaics, vol. 5, no. 4, pp. 1014-1019, 2015.
[51] G. Du, B. Chen, N. Chen, and R. Hu, “Efficient Boron Doping in the Back Surface Field of Crystalline Silicon Solar Cells via Alloyed-Aluminum–Boron Paste,” IEEE Electron Device Lett., vol. 33, no. 4, pp. 573-575, 2012.
[52] Y. Tomizawa, T. Imamura, M. Soeda, Y. Ikeda, and T. Shiro, “Laser doping of boron-doped Si paste for high-efficiency silicon solar cells,” Jpn. J. Appl. Phys., vol. 54, no. 8, pp. 1-5, 2015.
[53] C. Geisler, S. Kluska, S. Hopman, and M. Glatthaar, “Passivation-Induced Cavity Defects in Laser-Doped Selective Emitter Si Solar Cells—Formation Model and Recombination Analysis,” IEEE J. Photovoltaics, vol. 5, no. 3, pp. 792-798, 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code