Responsive image
博碩士論文 etd-0715117-150135 詳細資訊
Title page for etd-0715117-150135
論文名稱
Title
探討AIE和anti-ACQ對半導體高分子點的光學性質表現之影響以及其生物應用
The Effect of AIE/anti-ACQ on the Optical Performance of Semiconducting Polymer Dots for Biological Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-08-15
關鍵字
Keywords
半導體高分子點、聚集誘導螢光焠滅、生物顯影、窄峰、近紅外光放光
semiconducting polymer dots, aggregation-caused quenching, bioimaging, near-infrared emission, narrow fluorescence
統計
Statistics
本論文已被瀏覽 5714 次,被下載 130
The thesis/dissertation has been browsed 5714 times, has been downloaded 130 times.
中文摘要
近年來顯影技術越來越發達,不僅是應用在臨床診斷上,在研究領域上也有越來越多不同種類的顯影技術被發展出來。螢光顯影技術又是非常重要的技術之一,原因是螢光具有極佳的空間解析度與時間解析度 (spatial and time resolution),應用在不管是臨床上或是研究領域當中都是非常有利的工具,而螢光顯影當中共軛半導體高分子(簡稱Pdots)是非常具有潛力的螢光探針,因其具有吸收截面係數和不錯的量子產率 (quantum yield)、極佳的光穩定性、低的細胞毒性、適當的奈米顆粒(小於30 nm)以及容易生物偶聯等優點使Pdots非常適合
利用於生物顯影當中。目前已有許多不同波長的Pdots已被設計出來,其中更包含近紅外光 (near infrared,簡稱NIR)的Pdots,而近紅外光具有較高的穿透效率、對生物體較低的傷害、和生物體當中的自體螢光干擾 (autofluorescence)不重疊等等優點,因此應用在生物顯影當中是非常合適的。
然而傳統共軛半導體高分子點大多為具有剛性且平面結構的π共軛分子,分子間會因為π-π stacking而堆疊,而在聚集的狀況下螢光會減弱,此現象即為聚集導致螢光焠滅(aggregation caused quenching,ACQ)。目前用來解決聚集導致螢光焠滅的方法,包括具聚集誘導發光(AIE)、和以鍵結立體障礙大的分子(anti-ACQ),以立體障礙來阻止π-π stacking形式的堆疊,提高量子產率。而我的題目則會比較聚集誘導發光(AIE)和鍵結立體障礙大的分子(anti-ACQ),何者在我們的系統上能最有效的改善光學性質。

中文關鍵字:近紅外光放光,窄峰,生物顯影,聚集誘導螢光焠滅,半導體高分子點
Abstract
Since fluorescence imaging techniques provide a good range of spatial and temporal resolution, it is widely used in biological area. In recent years, fluorescence imaging techniques even applied to surgery. It makes easier for doctors on diagnosing and curing the diseases. In fluorescence imaging techniques, fluorescent probes are playing increasingly important roles. Among currently developed fluorescent probes, semiconducting polymer dots are one of the most suitable for biological application to their advantages such as high brightness, non-toxic, fast and stable emission rate, excellent photostability, easy surface modification, tunable optical properties and so on. However, Pdots with ultrahigh fluorescence brightness are extremely lacking due to aggregation-caused quenching (ACQ) caused by pi-pi stacking between the molecules.

In my first project, I want to solve the problem of aggregation-caused quenching in Pdots via aggregation-induced emission (AIE) behavior or coupling with bulky steric-hindered molecules(anti-ACQ). This article describes the design and synthesis of donor−bridge−acceptor-based semiconducting polymer dots(Pdots) that exhibit narrow-band emissions, ultrahigh brightness, and large Stokes shifts in the near-infrared (NIR) region. Finally, we prove that anti-ACQ compare to AIE can strongly effect the Pdots on optical performance. Then we chose the best performance of the Pdots for further experiment such as cell labeling、zebrafish bioimaging

Key words: near-infrared emission,narrow fluorescence,bioimaging,aggregation-caused quenching,semiconducting polymer dots.
目次 Table of Contents
論文審定書 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xii
化學結構縮寫表 xiii
第一部分 1
第一章 前言 1
第二章 實驗 19
2-1實驗藥品 19
2-2實驗儀器 21
2-3合成部分 25
2-4 Pdots的製備方法 36
2-5 Bioconjugation 37
2-6 細胞標記 38
2-7斑馬魚動物實驗 40
第三章 結果與討論 45
3-1 設計與反應探討 45
3-2 Pdots製備以及顆粒大小 48
3-3 Pdots光學性質探討 49
3-4 單晶結構分析 51
3-5高分子π-π stacking造成光譜紅移之探討 56
3-6 高分子THF/H2O混和溶液下堆疊之探討 58
3-7莫爾吸收係數的計算 61
3-8 單一顆粒亮度(Single particle brightness)與光穩定性(Photostability) 62
3-9 專一標定細胞以及細胞毒性 65
3-10動物實驗-斑馬魚血管影像觀測 67
第四章 結論 69
第二部分 70
第一章 前言 70
第二章 實驗 73
2-1實驗藥品 73
2-2實驗儀器 73
2-3合成部分 75
2-4 Pdots樣品的製備方法 76
2-4 Polymer懸浮溶液樣品的製備方法 77
2-5 偵測氫氣的方法與裝置(microsensor) 78
2-5 偵測氫氣的方法與裝置(GC-TCD) 79
第三章 結果與討論 80
3-1設計與反應探討 80
3-2 Pdots製備 81
3-3 Pdots光學性質探討 81
3-4 氫氣的偵測(microsensor) 82
3-5氫氣的偵測(GC-TCD) 85
第四章 結論 88
參考資料 89
附圖 96
參考文獻 References
1. van Dam, G. M.; Themelis, G.; Crane, L. M. A.; Harlaar, N. J.; Pleijhuis, R. G.; Kelder, W.; Sarantopoulos, A.; de Jong, J. S.; Arts, H. J. G.; van der Zee, A. G. J.; Bart, J.; Low, P. S.; Ntziachristos, V., Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-[alpha] targeting: first in-human results. Nat Med 2011, 17 (10), 1315-1319.
2. Hu, Z.; Yang, W.; Liu, H.; Wang, K.; Bao, C.; Song, T.; Wang, J.; Tian, J., From PET/CT to PET/MRI: Advances in Instrumentation and Clinical Applications. Mol. Pharm. 2014, 11 (11), 3798-3809.
3. Pressly, E. D.; Pierce, R. A.; Connal, L. A.; Hawker, C. J.; Liu, Y., Nanoparticle PET/CT Imaging of Natriuretic Peptide Clearance Receptor in Prostate Cancer. Bioconjugate Chem. 2013, 24 (2), 196-204.
4. Seo, J. W.; Baek, H.; Mahakian, L. M.; Kusunose, J.; Hamzah, J.; Ruoslahti, E.; Ferrara, K. W., 64Cu-Labeled LyP-1-Dendrimer for PET-CT Imaging of Atherosclerotic Plaque. Bioconjugate Chem. 2014, 25 (2), 231-239.
5. Criscione, J. M.; Dobrucki, L. W.; Zhuang, Z. W.; Papademetris, X.; Simons, M.; Sinusas, A. J.; Fahmy, T. M., Development and Application of a Multimodal Contrast Agent for SPECT/CT Hybrid Imaging. Bioconjugate Chem. 2011, 22 (9), 1784-1792.
6. Patel, N.; Duffy, B. A.; Badar, A.; Lythgoe, M. F.; Årstad, E., Bimodal Imaging of Inflammation with SPECT/CT and MRI Using Iodine-125 Labeled VCAM-1 Targeting Microparticle Conjugates. Bioconjugate Chem. 2015, 26 (8), 1542-1549.
7. Elsabahy, M.; Heo, G. S.; Lim, S.-M.; Sun, G.; Wooley, K. L., Polymeric Nanostructures for Imaging and Therapy. Chem. Rev. 2015, 115 (19), 10967-11011.
8. Smith, B. R.; Gambhir, S. S., Nanomaterials for In Vivo Imaging. Chem. Rev. 2017, 117 (3), 901-986.
9. Yao, J.; Yang, M.; Duan, Y., Chemistry, Biology, and Medicine of Fluorescent Nanomaterials and Related Systems: New Insights into Biosensing, Bioimaging, Genomics, Diagnostics, and Therapy. Chem. Rev. 2014, 114 (12), 6130-6178.
10. (a) England, C. G.; Hernandez, R.; Eddine, S. B. Z.; Cai, W., Molecular Imaging of Pancreatic Cancer with Antibodies. Mol. Pharm. 2016, 13 (1), 8-24; (b) Chakravarty, R.; Chakraborty, S.; Dash, A., 64Cu2+ Ions as PET Probe: An Emerging Paradigm in Molecular Imaging of Cancer. Mol. Pharm. 2016, 13 (11), 3601-3612; (c) Jokerst, J. V.; Gambhir, S. S., Molecular Imaging with Theranostic Nanoparticles. Acc. Chem. Res. 2011, 44 (10), 1050-1060.
11. Wang, J.; Qin, B.; Chen, X.; Wagner, W. R.; Villanueva, F. S., Ultrasound Molecular Imaging of Angiogenesis Using Vascular Endothelial Growth Factor-Conjugated Microbubbles. Mol. Pharm. 2017, 14 (3), 781-790.
12. Smith, B. R.; Gambhir, S. S., Nanomaterials for In Vivo Imaging. Chemical Reviews 2017, 117 (3), 901-986.
13. Yang, Z.; Sharma, A.; Qi, J.; Peng, X.; Lee, D. Y.; Hu, R.; Lin, D.; Qu, J.; Kim, J. S., Super-resolution fluorescent materials: an insight into design and bioimaging applications. Chem. Soc. Rev. 2016, 45 (17), 4651-4667.
14. Ren, M.; Deng, B.; Zhou, K.; Kong, X.; Wang, J.-Y.; Lin, W., Single Fluorescent Probe for Dual-Imaging Viscosity and H2O2 in Mitochondria with Different Fluorescence Signals in Living Cells. Anal. Chem. 2017, 89 (1), 552-555.
15. Gong, D.; Zhu, X.; Tian, Y.; Han, S.-C.; Deng, M.; Iqbal, A.; Liu, W.; Qin, W.; Guo, H., A Phenylselenium-Substituted BODIPY Fluorescent Turn-off Probe for Fluorescence Imaging of Hydrogen Sulfide in Living Cells. Anal. Chem. 2017, 89 (3), 1801-1807.
16. Sekar, T. V.; Foygel, K.; Devulapally, R.; Kumar, V.; Malhotra, S.; Massoud, T. F.; Paulmurugan, R., Molecular Imaging Biosensor Monitors p53 Sumoylation in Cells and Living Mice. Anal. Chem. 2016, 88 (23), 11420-11428.
17. Hong, G.; Antaris, A. L.; Dai, H., Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.
18. Vivero-Escoto, J. L.; Huxford-Phillips, R. C.; Lin, W., Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev. 2012, 41 (7), 2673-2685.
19. Li, J.; Zhu, J.-J., Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 2013, 138 (9), 2506-2515.
20. Paredes, J. M.; Idilli, A. I.; Mariotti, L.; Losi, G.; Arslanbaeva, L. R.; Sato, S. S.; Artoni, P.; Szczurkowska, J.; Cancedda, L.; Ratto, G. M.; Carmignoto, G.; Arosio, D., Synchronous Bioimaging of Intracellular pH and Chloride Based on LSS Fluorescent Protein. ACS Chem. Biol. 2016, 11 (6), 1652-1660.
21. Zhang, J.; Yu, S.-H., Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today 2016, 19 (7), 382-393.
22. (a) Yu, J.; Rong, Y.; Kuo, C.-T.; Zhou, X.-H.; Chiu, D. T., Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Anal. Chem. 2017, 89 (1), 42-56; (b) Wu, C.; Chiu, D. T., Highly Fluorescent Semiconducting Polymer Dots for Biology and Medicine. Angew. Chem. Int. Ed. 2013, 52 (11), 3086-3109.
23. Xu, H.; Li, Q.; Wang, L.; He, Y.; Shi, J.; Tang, B.; Fan, C., Nanoscale optical probes for cellular imaging. Chem. Soc. Rev. 2014, 43 (8), 2650-2661.
24. Szymanski, C.; Wu, C.; Hooper, J.; Salazar, M. A.; Perdomo, A.; Dukes, A.; McNeill, J., Single Molecule Nanoparticles of the Conjugated Polymer MEH−PPV, Preparation and Characterization by Near-Field Scanning Optical Microscopy. The Journal of Physical Chemistry B 2005, 109 (18), 8543-8546.
25. Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J., Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging. ACS Nano 2008, 2 (11), 2415-2423.
26. Wu, C.; Bull, B.; Christensen, K.; McNeill, J., Ratiometric Single-Nanoparticle Oxygen Sensors for Biological Imaging. Angew. Chem. Int. Ed. 2009, 48 (15), 2741-2745.
27. Wu, C.; Schneider, T.; Zeigler, M.; Yu, J.; Schiro, P. G.; Burnham, D. R.; McNeill, J. D.; Chiu, D. T., Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting. J. Am. Chem. Soc. 2010, 132 (43), 15410-15417.
28. Rong, Y.; Wu, C.; Yu, J.; Zhang, X.; Ye, F.; Zeigler, M.; Gallina, M. E.; Wu, I. C.; Zhang, Y.; Chan, Y.-H.; Sun, W.; Uvdal, K.; Chiu, D. T., Multicolor Fluorescent Semiconducting Polymer Dots with Narrow Emissions and High Brightness. ACS Nano 2013, 7 (1), 376-384.
29. Wu, I. C.; Yu, J.; Ye, F.; Rong, Y.; Gallina, M. E.; Fujimoto, B. S.; Zhang, Y.; Chan, Y.-H.; Sun, W.; Zhou, X.-H.; Wu, C.; Chiu, D. T., Squaraine-Based Polymer Dots with Narrow, Bright Near-Infrared Fluorescence for Biological Applications. J. Am. Chem. Soc. 2015, 137 (1), 173-178.
30. Sun, K.; Tang, Y.; Li, Q.; Yin, S.; Qin, W.; Yu, J.; Chiu, D. T.; Liu, Y.; Yuan, Z.; Zhang, X.; Wu, C., In Vivo Dynamic Monitoring of Small Molecules with Implantable Polymer-Dot Transducer. ACS Nano 2016, 10 (7), 6769-6781.
31. Kuo, C.-T.; Thompson, A. M.; Gallina, M. E.; Ye, F.; Johnson, E. S.; Sun, W.; Zhao, M.; Yu, J.; Wu, I. C.; Fujimoto, B.; DuFort, C. C.; Carlson, M. A.; Hingorani, S. R.; Paguirigan, A. L.; Radich, J. P.; Chiu, D. T., Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Nat. Commun. 2016, 7, 11468.
32. Tang, Y.; Chen, H.; Chang, K.; Liu, Z.; Wang, Y.; Qu, S.; Xu, H.; Wu, C., Photo-Cross-Linkable Polymer Dots with Stable Sensitizer Loading and Amplified Singlet Oxygen Generation for Photodynamic Therapy. ACS Applied Materials & Interfaces 2017, 9 (4), 3419-3431.
33. Fu, B.; Huang, J.; Bai, D.; Xie, Y.; Wang, Y.; Wang, S.; Zhou, X., Label-free detection of pH based on the i-motif using an aggregation-caused quenching strategy. Chem. Commun. 2015, 51 (95), 16960-16963.
34. Chen, C.-P.; Huang, Y.-C.; Liou, S.-Y.; Wu, P.-J.; Kuo, S.-Y.; Chan, Y.-H., Near-Infrared Fluorescent Semiconducting Polymer Dots with High Brightness and Pronounced Effect of Positioning Alkyl Chains on the Comonomers. ACS Appl. Mater. Interfaces 2014, 6 (23), 21585-21595.
35. Trofymchuk, K.; Reisch, A.; Shulov, I.; Mely, Y.; Klymchenko, A. S., Tuning the color and photostability of perylene diimides inside polymer nanoparticles: towards biodegradable substitutes of quantum dots. Nanoscale 2014, 6 (21), 12934-12942.
36. Yu, Z.; Duan, Y.; Cheng, L.; Han, Z.; Zheng, Z.; Zhou, H.; Wu, J.; Tian, Y., Aggregation induced emission in the rotatable molecules: the essential role of molecular interaction. J. Mater. Chem. 2012, 22 (33), 16927-16932.
37. Wang, H.; Zhao, E.; Lam, J. W. Y.; Tang, B. Z., AIE luminogens: emission brightened by aggregation. Mater. Today 2015, 18 (7), 365-377.
38. Reisch, A.; Klymchenko, A. S., Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. Small 2016, 12 (15), 1968-1992.
39. Chen, Y.; Han, H.; Tong, H.; Chen, T.; Wang, H.; Ji, J.; Jin, Q., Zwitterionic Phosphorylcholine–TPE Conjugate for pH-Responsive Drug Delivery and AIE Active Imaging. ACS Appl. Mater. Interfaces 2016, 8 (33), 21185-21192.
40. Liu, H.-Y.; Wu, P.-J.; Kuo, S.-Y.; Chen, C.-P.; Chang, E.-H.; Wu, C.-Y.; Chan, Y.-H., Quinoxaline-Based Polymer Dots with Ultrabright Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. J. Am. Chem. Soc. 2015, 137 (32), 10420-10429.
41. Chen, S.; Wang, H.; Hong, Y.; Tang, B. Z., Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Mater. Horiz. 2016, 3 (4), 283-293.
42. Reisch, A.; Didier, P.; Richert, L.; Oncul, S.; Arntz, Y.; Mély, Y.; Klymchenko, A. S., Collective fluorescence switching of counterion-assembled dyes in polymer nanoparticles. Nat. Commun. 2014, 5, 4089.
43. Zhao, Q.; Li, K.; Chen, S.; Qin, A.; Ding, D.; Zhang, S.; Liu, Y.; Liu, B.; Sun, J. Z.; Tang, B. Z., Aggregation-induced red-NIR emission organic nanoparticles as effective and photostable fluorescent probes for bioimaging. J. Mater. Chem. 2012, 22 (30), 15128-15135.
44. Liu, Y.; Lam, J. W. Y.; Zheng, X.; Peng, Q.; Kwok, R. T. K.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z., Aggregation-Induced Emission and Photocyclization of Poly(hexaphenyl-1,3-butadiene)s Synthesized from “1 + 2” Polycoupling of Internal Alkynes and Arylboronic Acids. Macromolecules 2016, 49 (16), 5817-5830.
45. Tong, H.; Hong, Y.; Dong, Y.; Hau; Lam, J. W. Y.; Li, Z.; Guo, Z.; Guo, Z.; Tang, B. Z., Fluorescent "light-up" bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chem. Commun. 2006, (35), 3705-3707.
46. Jiang, G.; Zeng, G.; Zhu, W.; Li, Y.; Dong, X.; Zhang, G.; Fan, X.; Wang, J.; Wu, Y.; Tang, B. Z., A selective and light-up fluorescent probe for [small beta]-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Chem. Commun. 2017, 53 (32), 4505-4508.
47. Li, K.; Liu, B., Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43 (18), 6570-6597.
48. Lin, C.-J.; Liu, Y.-H.; Peng, S.-M.; Shinmyozu, T.; Yang, J.-S., Excimer–Monomer Photoluminescence Mechanochromism and Vapochromism of Pentiptycene-Containing Cyclometalated Platinum(II) Complexes. Inorg Chem 2017, 56 (9), 4978-4989.
49. Tan, W. S.; Prabhakar, C.; Liu, Y.-H.; Peng, S.-M.; Yang, J.-S., Effects of iptycene scaffolds on the photoluminescence of N,N-dimethylaminobenzonitrile and its analogues. Photochem. Photobiol. Sci. 2014, 13 (2), 211-223.
50. Yang, J.-S.; Yan, J.-L., Central-ring functionalization and application of the rigid, aromatic, and H-shaped pentiptycene scaffold. Chem. Commun. 2008, (13), 1501-1512.
51. (a) Yang, J.-S.; Ko, C.-W., Pentiptycene Chemistry:  New Pentiptycene Building Blocks Derived from Pentiptycene Quinones. J. Org. Chem. 2006, 71 (2), 844-847; (b) Yang, J.-S.; Yan, J.-L.; Hwang, C.-Y.; Chiou, S.-Y.; Liau, K.-L.; Gavin Tsai, H.-H.; Lee, G.-H.; Peng, S.-M., Probing the Intrachain and Interchain Effects on the Fluorescence Behavior of Pentiptycene-Derived Oligo(p-phenyleneethynylene)s. J. Am. Chem. Soc. 2006, 128 (43), 14109-14119.
52. Zhang, X.; Yu, J.; Rong, Y.; Ye, F.; Chiu, D. T.; Uvdal, K., High-intensity near-IR fluorescence in semiconducting polymer dots achieved by cascade FRET strategy. Chem. Sci. 2013, 4 (5), 2143-2151.
53. Nguyen, H. Q.; Bhatt, M. P.; Rainbolt, E. A.; Stefan, M. C., Synthesis and characterization of a polyisoprene-b-polystyrene-b-poly(3-hexylthiophene) triblock copolymer. Polym. Chem. 2013, 4 (3), 462-465.
54. (a) Song, H.-J.; Kim, D.-H.; Lee, E.-J.; Moon, D.-K., Conjugated polymers consisting of quinacridone and quinoxaline as donor materials for organic photovoltaics: orientation and charge transfer properties of polymers formed by phenyl structures with a quinoxaline derivative. J. Mater. Chem. 2013, 1 (19), 6010-6020; (b) Caffy, F.; Delbosc, N.; Chavez, P.; Leveque, P.; Faure-Vincent, J.; Travers, J. P.; Djurado, D.; Pecaut, J.; Grevin, B.; Lemaitre, N.; Leclerc, N.; Demadrille, R., Synthesis, optoelectronic properties and photovoltaic performances of wide band-gap copolymers based on dibenzosilole and quinoxaline units, rivals to P3HT. Polym. Chem. 2016, 7 (25), 4160-4175.
55. Samanta, S.; Manna, U.; Das, G., White-light emission from simple AIE-ESIPT-excimer tripled single molecular system. New Journal of Chemistry 2017, 41 (3), 1064-1072.
56. Jin, X.; Dong, L.; Di, X.; Huang, H.; Liu, J.; Sun, X.; Zhang, X.; Zhu, H., NIR luminescence for the detection of latent fingerprints based on ESIPT and AIE processes. RSC Adv. 2015, 5 (106), 87306-87310.
57. Hu, R.; Lager, E.; Aguilar-Aguilar, A.; Liu, J.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Zhong, Y.; Wong, K. S.; Peña-Cabrera, E.; Tang, B. Z., Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives. J. Phys. Chem. C 2009, 113 (36), 15845-15853.
58. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chem. Rev. 2010, 110 (11), 6446-6473.
59. Hammarström, L.; Hammes-Schiffer, S., Artificial Photosynthesis and Solar Fuels. Acc. Chem. Res. 2009, 42 (12), 1859-1860.
60. Li, X.; Wang, M.; Zhang, S.; Pan, J.; Na, Y.; Liu, J.; Åkermark, B.; Sun, L., Noncovalent Assembly of a Metalloporphyrin and an Iron Hydrogenase Active-Site Model: Photo-Induced Electron Transfer and Hydrogen Generation. J. Phys. Chem. B 2008, 112 (27), 8198-8202.
61. Andreiadis, E. S.; Chavarot-Kerlidou, M.; Fontecave, M.; Artero, V., Artificial Photosynthesis: From Molecular Catalysts for Light-driven Water Splitting to Photoelectrochemical Cells. Photochem. Photobiol. 2011, 87 (5), 946-964.
62. Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A., Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. J. Am. Chem. Soc. 2004, 126 (41), 13406-13413.
63. Huang, J.; Mulfort, K. L.; Du, P.; Chen, L. X., Photodriven Charge Separation Dynamics in CdSe/ZnS Core/Shell Quantum Dot/Cobaloxime Hybrid for Efficient Hydrogen Production. J. Am. Chem. Soc. 2012, 134 (40), 16472-16475.
64. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8 (1), 76-80.
65. Cao, S.; Yu, J., g-C3N4-Based Photocatalysts for Hydrogen Generation. J. Phys. Chem. Lett. 2014, 5 (12), 2101-2107.
66. Zhao, Z.; Sun, Y.; Dong, F., Graphitic carbon nitride based nanocomposites: a review. Nanoscale 2015, 7 (1), 15-37.
67. Schwinghammer, K.; Tuffy, B.; Mesch, M. B.; Wirnhier, E.; Martineau, C.; Taulelle, F.; Schnick, W.; Senker, J.; Lotsch, B. V., Triazine-based Carbon Nitrides for Visible-Light-Driven Hydrogen Evolution. Angew. Chem. Int. Ed. 2013, 52 (9), 2435-2439.
68. Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V., Crystalline Carbon Nitride Nanosheets for Improved Visible-Light Hydrogen Evolution. J. Am. Chem. Soc. 2014, 136 (5), 1730-1733.
69. Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V., A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 2014, 5 (7), 2789-2793.
70. Schwinghammer, K.; Hug, S.; Mesch, M. B.; Senker, J.; Lotsch, B. V., Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environ Sci. 2015, 8 (11), 3345-3353.
71. Park, J. H.; Ko, K. C.; Park, N.; Shin, H.-W.; Kim, E.; Kang, N.; Hong Ko, J.; Lee, S. M.; Kim, H. J.; Ahn, T. K.; Lee, J. Y.; Son, S. U., Microporous organic nanorods with electronic push-pull skeletons for visible light-induced hydrogen evolution from water. J. Mater. Chem. A 2014, 2 (21), 7656-7661.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code