Responsive image
博碩士論文 etd-0715117-161400 詳細資訊
Title page for etd-0715117-161400
論文名稱
Title
CuGaSe2/Si異質磊晶之界面結構設計及太陽電池元件模擬
CuGaSe2/Si heteroepitaxy: interface structural design and solar-cell simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-08-17
關鍵字
Keywords
二維半導體材料(GaSe和InSe)、凡得瓦爾磊晶法、CuInSe2、CuGaSe2、超薄矽晶異質接面太陽電池、PC1D太陽電池元件模擬
Van der Waals epitaxy, PC1D simulation tool for solar cells, 2D semiconducting materials (GaSe, CuInSe2, CuGaSe2, Ultrathin crystalline Si heterojunction solar cell, InSe)
統計
Statistics
本論文已被瀏覽 5674 次,被下載 1447
The thesis/dissertation has been browsed 5674 times, has been downloaded 1447 times.
中文摘要
矽晶基板占太陽電池成本有一定的比重,薄型化是矽晶太陽電池在追求發電效率外另一重點目標。未來的超薄型矽晶片(10~50μm)將因本身光吸收係數較低且非直接能隙的材料特性,而無法有效吸收入射光。對此,本研究提出一種新型且可用低溫製程製作的元件結構設計,即結合超薄矽晶與銅銦鎵硒化合物半導體形成:p-CuGaSe2/n-Si異質接面並在矽晶背面接合n-CuInSe2以促進光吸收量。藉由光輔助分子束磊晶法已驗證CuGaSe2 (簡稱CGS)和CuInSe2 (簡稱CIS)可在300℃磊晶成長於(001)GaAs基板上,而在此一元件結構中。矽與銅銦鎵硒化合物之晶格常數差異更大,CGS/Si和Si/CIS界面差排的數量導致載子複合速率分別高達1.7x10^5 cm/sec和4.3x10^5cm/sec。
為排除介面缺陷的影響,可利用凡德瓦爾磊晶法(Van der Waals Epitaxy)分別置入具二維結構的GaSe和InSe半導體薄層於CGS/Si和Si/CIS界面。我們使用PC1D一維太陽電池模擬軟體,代入文獻搜尋所獲得各材料光性和電性之實測數據,探討矽與銅銦鎵硒化合物界面間加入二維材料膜層後元件發電特性的改善情形,並應用Taguchi法進行元件優化。我們發現原先的元件結構p-CGS(900nm, doping conc.1x10^17atoms/cm3)/ n-Si(10um, doping conc. 1.56x10^15atoms/cm3) /n-CIS(500nm, doping conc. 1x10^17atoms/cm3)其發電效率為22.1%,開路電壓0.743V,短路電流0.040A,填充因子73.82%;界面改質後,元件結構p-CGS(900nm, doping conc.1x10^17atoms/cm3)/GaSe(15nm, doping conc. 2.2x10^15atoms/cm3)/n-Si(10um, doping conc. 1.56x10^15atoms/cm3)/InSe(15nm, doping conc.1x10^16 atoms/cm3)/n-CIS(500nm, doping conc. 1x10^17atoms/cm3)其元件發電效率可達27.3%,開路電壓0.858V,短路電流0.037A,填充因子84.09%。GaSe的置入顯著降低載子複合速率,使得開路電壓上升。而後方InSe的置入則在元件能帶結構的導帶和價帶不連續位置分別產生高低不一的能障,在CIS中產生的電洞因InSe價帶形成之能障而聚集於此,使矽基板的電子欲經過InSe時會與電洞複合。因此在矽基板減薄而降低光吸收時,CIS光吸收量的增加,使更多電子在CIS產生並直接導出電池,而助於轉換效率提升。
Abstract
Next generation Si solar cell under development will consider to use ultra-thin wafers with 5~50µm in thickness for the reduction of material cost and the flexibility to be integrated in the building design. However, the challenge is to develop an effective light trapping technology for the poor optical absorber such as Si. In this work, we propose a novel device structure using p-type CuGaSe2 (CGS) to form a heterojunction with n-type Si and adding a n-type CuInSe2 (CIS) layer, whose optical absorption coefficient as high as 10^-5 cm-1, at the bottom of Si wafer. An additional advantage for this heterostructure is the capability to fabricate the whole device at a temperature as low as 300oC. There is a major concern on large lattice mismatch at the CGS/Si and Si/CIS interfaces, the corresponding carrier recombination velocities reach 1.7x10^5 and 4.34x10^5 cm/sec, respectively. Van der Waals epitaxy with inserting a 2D semiconducting material, such as GaSe or InSe, at CGS/Si and Si/CIS interfaces could prohibit the formation of misfit dislocations. PC-1D simulation tool for solar cells is used along with the experimental data of material properties acquired from the literature survey to explore our device performance. In addition, Taguchi method is applied for device optimization. Our simulation results show that the energy conversion efficiency of p-CGS(900nm, doping conc.1x10^17atoms/cm3)/ n-Si(10um, doping conc. 1.56x10^15atoms/cm3) /n-CIS(500nm, doping conc. 1x10^17atoms/cm3) without interface modification may reach 22.1% (Voc=0.743V, Isc=40mA, FF=73.8) after optimizing the device parameters. The cell efficiency increases to 27.3% (Voc=0.858V, Isc=37mA, FF=84.1) with the device structure of p-CGS(900nm, doping conc.1x10^17atoms/cm3)/GaSe(15nm, doping conc. 2.2x10^15atoms/cm3)/n-Si(10um, doping conc. 1.56x10^15atoms/cm3)/InSe(15nm, doping conc.1x10^16 atoms/cm3)/n-CIS(500nm, doping conc. 1x10^17atoms/cm3)
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章、緒論 1
1.1 簡介 1
1.2 研究動機與目的 3
第二章、文獻回顧 5
2.1 CuGaSe2之材料性質 5
2.1.1 CuGaSe2之光電性質及晶體結構 5
2.1.2 CuGaSe2之本質點缺陷 9
2.1.3 CuGaSe2之薄膜製程技術 11
2.2 CuGaSe2/Si異質接面及磊晶法 13
2.2.1能帶結構 13
2.2.2凡德瓦爾磊晶法 17
第三章、模擬軟體之物理模型 19
3.1 PC1D使用的物理模型 20
3.1.1載子傳輸 20
3.1.2載子分佈統計 21
3.1.3連續方程式 22
3.1.4波松方程式 23
3.2 PC1D內所使用的參數 24
3.2.1折射率、光吸收係數及反射率 24
3.2.2自由載子吸收 26
3.2.3能帶結構 27
3.2.4能帶窄化 28
3.2.5遷移率 30
3.2.6載子復合模型 32
3.2.7未完全游離的摻雜 34
3.3 PC1D功能驗證 35
第四章、材料參數設定及選用 37
4.1 CuGaSe2/Si膜層厚度考量 38
4.2 Si參數設定及選用 43
4.3 CuGaSe2參數設定及選用 45
4.4 GaSe、InSe參數設定及選用 51
4.5 CuInSe2參數設定及選用 57
第五章、模擬結果分析 59
5.1 CuGaSe2 / Si / CuInSe2 結構 59
5.2 CuGaSe2 / GaSe / Si / CuInSe2 結構 65
5.3 CuGaSe2 / GaSe / Si / InSe /CuInSe2 結構 69
第六章、結論 84
參考資料 85
參考文獻 References
[1] I. W. Group, "International Technology Roadmap for Photovoltaic (ITRPV) 2016 Results," ITRPV Working Group, Germany, 2014.
[2] Dismukes, J. P., L. Ekstrom, and R. J. Paff, "Lattice parameter and density in germanium-silicon alloys," J. phys. Chem, vol. 68, no. 10, pp. 3021-3027, 1964.
[3] J. Tuttle, "Effects of composition and substrate temperature on the electro-optical properties of thin-film CuInSe2 and CuGaSe2," Solar cells, vol. 24, no. 1, pp. 67-79, 1988.
[4] Burdick, C.L. and J.H. Ellis, "The crystal structure of chalcopyrite determined by X rays," Journal of the American Chemical Society, vol. 39, no. 12, pp. 2518-2525, 1917.
[5] Arndt, W., H. Dittrich, and H. W. Schock, "CuGaSe 2 thin films for photovoltaic applications," Thin Solid Films, vol. 130, no. 3, pp. 209-216, 1985.
[6] J. Mikkelsen, "Ternary phase relations of the chalcopyrite compound CuGaSe2," Journal of Electronic Materials , vol. 10, no. 3, pp. 541-558, 1981.
[7] 陳瑋, “Epitaxial Growth of CuGaSe2 Thin Film,” 中山大學, 高雄市, 1995.
[8] Wei, S.-H., S. Zhang, and A. Zunger, "Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties," Applied physics letters, vol. 72, no. 24, pp. 3199-3201, 1998.
[9] Zhang, S. B., Su-Huai Wei, and Alex Zunger, "A phenomenological model for systematization and prediction of doping limits in II–VI and I–III–VI 2 compounds," Journal of Applied Physics, vol. 83, no. 6, pp. 3192-3196, 1998.
[10] Wei, Su-Huai, and S. B. Zhang, "Defect properties of CuInSe2 and CuGaSe2," Journal of Physics and Chemistry of Solids, vol. 66, no. 11, pp. 1994-1999, 2005.
[11] A. Catalano, "Polycrystalline thin-film technologies:Status and prospects," Solar Energy Materials and Solar Cells , vol. 41, pp. 205-217, 1996.
[12] 林松斌, “Epitaxial Growth of CuInSe2 Thin Films:Microstructure Control and annealing Behaviors,” 中山大學, 高雄市, 1995.
[13] Stangl, Rolf, Caspar Leendertz, and Jan Haschke, "Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET," Solar Energy, vol. 1, no. 1, pp. 321-322, 2010.
[14] R. L. Anderson, "Experiments on ge-gaas heterojunctions," Solid-State Electronics, vol. 5, no. 5, pp. 341-351, 1962.
[15] Neamen, David A., and 楊賜麟, 半導體物理與元件, 台北市: 美商麥格羅希爾國際股份有限公司台灣分公司, 2005.
[16] Koma, A., K. Sunouchi, and T. Miyajima, "Fabrication of ultrathin heterostructures with van der Waals epitaxy," Journal of Vacuum Science & Technology B, vol. 3, no. 2, pp. 724-725, 1985.
[17] Rybkovskiy, D. V., Arutyunyan, N. R., Orekhov, A. S., Gromchenko, I. A., Vorobiev, I. V., Osadchy, A. V, "Size-induced effects in gallium selenide electronic structure: The influence of interlayer interactions," Physical Review B, vol. 84, no. 8, pp. 085314-085315, 2011.
[18] N. C. Fernelius, "Properties of gallium selenide single crystal," Progress in crystal growth and characterization of materials, vol. 28, no. 4, pp. 275-353, 1994.
[19] Lei, S., Ge, L., Liu, Z., Najmaei, S., Shi, G., You, G., "Synthesis and photoresponse of large GaSe atomic layers," Nano letters, vol. 13, no. 6, pp. 2777-2781, 2013.
[20] Xufan Li, Ming-Wei Lin, Alexander A. Puretzky, Juan C. Idrobo, Cheng Ma, Miaofang Chi, Mina Yoon,, "Controlled vapor phase growth of single crystalline, two-dimensional GaSe crystals with high photoresponse," Scientific reports, vol. 4, no. 1, pp. 5497-5498, 2014.
[21] M. Eddrief, "Heteroepitaxy of GaSe layered semiconductor compound on Si (111) 7× 7 substrate: a Van der Waals epitaxy?," Journal of crystal growth, vol. 135, no. 1, pp. 1-10, 1994.
[22] W. Jaegermann, "Perspectives of the concept of van der Waals epitaxy: growth of lattice mismatched GaSe (0001) films on Si (111), Si (110) and Si (100)," Thin Solid Films , vol. 380, no. 1, pp. 276-281, 2000.
[23] M. A. Green, "Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients," Solar Energy Materials & Solar Cells, vol. 92, no. 11, pp. 1305-1310, 2008.
[24] P. A. Basore, "Numerical modeling of textured silicon solar cells using PC-1D," in Proceedings of the 21st IEEE Photovoltaic Specialists Conference, Kissimmee, FA, USA, 1990.
[25] P. A. Basore, "Extended spectral analysis of internal quantum efficiency," in Proceedings of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, Kentucky, USA, 1993.
[26] El-Nahass, M. M., A. A. M. Farag, and H. S. Soliman., "Optical absorption and dispersion characterizations of CuGaSe 2 thin films prepared by flash evaporation technique," Optics Communications, vol. 284, no. 10, pp. 2515-2522, 2011.
[27] H. Fan, O. Willardson, and O. Beer, "Semiconductors and semimetals," Academic Press, pp. 409-410, 1967.
[28] M. Rüdiger, J. Greulich, A. Richter, and M. Hermle, "Parameterization of free carrier absorption in highly doped silicon for solar cells," IEEE Transactions on Electron Devices, vol. 60, no. 7, pp. 2156-2163, 2013.
[29] A. Schenk, "Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation," Journal of Applied Physics, vol. 84, no. 7, pp. 3684-3695, 1998.
[30] D. Y. Cuevas, "Empirical determination of the energy band gap narrowing in highly doped n+ silicon," Journal of Applied Physics, vol. 114, no. 4, pp. 194505-194506, 2013.
[31] D. Y. Cuevas, "Empirical determination of the energy band gap narrowing in p+ silicon heavily doped with boron," Journal of Applied Physics, vol. 114, no. 4, pp. 044508-044509, 2014.
[32] J. R. Hauser, "The effects of distributed base potential on emitter-current injection density and effective base resistance for stripe transistor geometries," IEEE Transactions on Electron Devices , vol. 11, no. 5, pp. 238-242, 1964.
[33] D. B. M. Klaassen, "A unified mobility model for device simulation - I. Model equations and concentration dependence," Solid-State Electronics, vol. 35, no. 7, pp. 953-959, 1992.
[34] D. B. M. Klaassen, "A unified mobility model for device simulation - II. Temperature dependence of carrier mobility and lifetime," Solid State Electronics, vol. 35, no. 7, pp. 961-967, 1992.
[35] F. Schindler, M. Forster, J. Broisch, J. Schön, J. Giesecke, S. Rein, "Towards a unified low-field model for carrier mobilities in crystalline silicon," Solar Energy Materials and Solar Cells, vol. 131, pp. 92-99, 2014.
[36] Thomas, D. M. Caughey and R. E., "Carrier mobilities in silicon empirically related to doping and field," Proceedings of the IEEE, pp. 2192-3, 1967.
[37] N. D. Arora, J. R. Hauser, and D. J. Roulston, "Electron and hole mobilities in silicon as a function of concentration and temperature," IEEE Transactions on Electron Devices, vol. 29, pp. 292-5, 1982.
[38] A. Richter, S. W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, "Improved quantitative description of Auger recombination in crystalline silicon," Physical Review B, vol. 86, no. 16, pp. 1-14, 2012.
[39] Cuevas, M. J. Kerr and A., "General parameterization of Auger recombination in crystalline silicon," Journal of Applied Physics, vol. 91, no. 4, pp. 2473-80, 2002.
[40] Tobias Fellmeth, S. Mack, J. Bartsch, D. Erath, U. Jäger, R. Preu, F. Clement, and D. Biro, "20.1% efficient silicon solar cell with aluminum back surface field," IEEE Electron Device Letters, vol. 32, no. 8, pp. 1101-1103, 2011.
[41] "High Efficient CIGS based Thin Film Solar Cell Performance Optimization using PC1D," International Research Journal of Engineering and Technology, vol. 3, no. 6, pp. 385-388, 2016.
[42] Mikio Taguchi, Ayumu Yano, Satoshi Tohoda, Kenta Matsuyama, Yuya Nakamura, Takeshi Nishiwaki,, "24.7% record efficiency HIT solar cell on thin silicon wafer," IEEE Journal of Photovoltaics, vol. 4, no. 1, pp. 96-99, 2014.
[43] X. Hua, "Mechanism of trapping effect in heterojunction with intrinsic thin-layer solar cells: Effect of density of defect states," IEEE Transactions on Electron Devices, vol. 59, no. 5, pp. 1227-1235, 2012.
[44] Jianjun Liang and E. A. SchiffS. Guha, Baojie Yan, and J. Yang, "Hole-mobility limit of amorphous silicon solar cells," Applied physics letters, vol. 88, no. 6, pp. 063512-063513, 2006.
[45] Anderson, Betty Lise Anderson and Richard L., 半導體元件概論, 台北縣: 全華圖書, 2008.
[46] D. E. CARLSON, "Amorphous silicon solar cells," IEEE Transactions on Electron Devices, vol. 24, no. 4, pp. 449-453, 1977.
[47] W. R. Fahrner, Amorphous silicon/Crystalline silicon heterojunction solar cells, Berlin Heidelberg: Springer, 2013.
[48] Antonio Luque, Steven Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons Ltd, 2003.
[49] M. I. e. a. Alonso, "Optical functions and electronic structure of CuInSe 2, CuGaSe 2, CuInS 2, and CuGaS 2," Physical Review B, vol. 63, no. 7, p. 075203, 2001.
[50] A. Rothwarf, "CuInSe2/Cd (Zn) S solar cell modeling and analysis," Solar cells , vol. 16, pp. 567-590, 1986.
[51] C. Honsberg, "Bulk Lifetime," PV EDUCATION.ORG, [Online]. Available: http://www.pveducation.org/pvcdrom/characterisation/bulk-lifetime. [Accessed 12 5 2017].
[52] 黃惠良、曾百亨, 太陽電池, 高雄市: 五南圖書, 2008.
[53] H. D. Barber, "Effective mass and intrinsic concentration in silicon," Solid-State Electronics, vol. 10, no. 11, pp. 1039-1051, 1967.
[54] Siebentritt, Susanne, and Steffen Schuler, "Defects and transport in the wide gap chalcopyrite CuGaSe2," Journal of Physics and Chemistry of Solids , vol. 64, no. 9, pp. 1621-1626, 2003.
[55] Sathiabama Thiru, Masaki Asakawa, Kazuki Honda, Atsushi Kawaharazuka, Atsushi Tackeuchi, Toshiki Makimoto, Yoshiji Horikoshi., "Study of single crystal CuInSe 2 thin films and CuGaSe 2/CuInSe 2 single quantum well grown by molecular beam epitaxy," Journal of Crystal Growth, vol. 1, no. 425, pp. 203-206, 2015.
[56] L. Mandel, "Electrical properties of CuGaSe2 single crystals," Solid State Communications , vol. 32, no. 3, pp. 201-204, 1979.
[57] L. S. Lerner, "CuGaSe2 and AgInSe2: Preparation and properties of single crystals," Journal of Physics and Chemistry of Solids , vol. 27, no. 1, pp. 1-8, 1966.
[58] Fujita, Miki, Atsushi Kawaharazuka, and Yoshiji Horikoshi, "Characteristics of CuGaSe 2 layers grown on GaAs substrates," Journal of Crystal Growth, vol. 378, pp. 154-157, 2013.
[59] A. Amara, "Electrical properties of CuGaSe2 single crystals and polycrystalline coevaporated thin films," physica status solidi (a), vol. 204, no. 4, pp. 1138-1146, 2007.
[60] Balberg, I., D. Albin, and R. Noufi, "Mobility‐lifetime products in CuGaSe2," Applied physics letters, vol. 54, no. 13, pp. 1244-1246, 1989.
[61] W.-W. Hsu, J. Y. Chen, T.-H. Cheng, S. C. Lu, W.-S. Ho, Y.-Y. Chen, Y.-J. Chien, and C. W. Liu, "Surface passivation of Cu (In, Ga) Se2 using atomic layer deposited Al2O3," Applied Physics Letters, vol. 100, no. 2, pp. 023508-023509, 2012.
[62] R. Noufi, "Physical properties and photovoltaic potential of thin film of CuGaSe2," Solar cells , vol. 17, no. 2, pp. 303-307, 1986.
[63] Yamamoto, Yukio, Toshiyuki Yamaguchi, and Akira Yoshida, "Characterization of CuGaSe2 Thin Films Prepared by RF Sputtering from Binary Compounds," Japanese Journal of Applied Physics, vol. 39, no. 1, pp. 166-167, 2000.
[64] S. Schuler, "Charge carrier transport in polycrystalline CuGaSe/sub 2/thin films," in Photovoltaic Specialists Conference, 2002.
[65] F. Luckert, "Diamagnetic shift of the A free exciton in CuGaSe 2 single crystals," Applied Physics Letters, vol. 97, no. 16, pp. 162101-162102, 2010.
[66] Goetzberger, Adolf, Willeke Palz, and G. Willeke, eds., "Seventh EC Photovoltaic Solar Energy Conference: Proceedings of the International Conference, held at Sevilla," Spain, 2013.
[67] S. Siebentritt, Wide-gap chalcopyrites. Ed. Uwe Rau., Berlin: Springer, 2006.
[68] P. Singh, "Simulated solar cell device of CuGaSe 2 by using CdS, ZnS and ZnSe buffer layers," Materials Science in Semiconductor Processing , vol. 42, pp. 288-302, 2016.
[69] A. Soni, "Electronic and optical modeling of solar cell compounds CuGaSe2 and CuInSe2," Journal of electronic materials, vol. 40, no. 11, pp. 2197-2198, 2011.
[70] J. Stankiewicz, "Electrical and optical properties of CuGaSe2," Solar Energy Materials , vol. 1, no. 5, pp. 369-377, 1979.
[71] J. H. Schön, "n-type conduction in Ge-doped CuGaSe2," Applied physics letters , vol. 75, no. 19, pp. 2969-2971, 1999.
[72] E. Machlin, Materials Science in Microelectronics I: The Relationships Between Thin Film Processing and Structure, Elsevier, 2010.
[73] M. Böhm, Physics of Ternary Compounds/Physik Der Ternären Verbindungen, Springer Science & Business Media, 1985.
[74] Wasim, S. M., and G. Shánchez Porras, "On the hole mobility of CuGaSe2," physica status solidi (a), vol. 79, no. 1, pp. 65-66, 1983.
[75] Mandal, K. C., Noblitt, C., Choi, M., Smirnov, A., & Rauh, R. D. , "Crystal growth, characterization and anisotropic electrical properties of GaSe single crystals for THz source and radiation detector applications," AIP Conference Proceedings, vol. 772, no. 1, pp. 159-160, 2005.
[76] Valeriy G. Voevodin, Olga V. Voevodina, Svetlana A. Bereznaya, Zoya V. Korotchenko, "Large single crystals of gallium selenide: growing, doping by In and characterization," Optical Materials , vol. 26, no. 4, pp. 495-499, 2004.
[77] Leung, P. C., Andermann, G., Spitzer, W. G., & Mead, C. A., "Dielectric constants and infrared absorption of GaSe," Journal of Physics and Chemistry of Solids, vol. 27, no. 5, pp. 849-855, 1966.
[78] Ghalouci, L., Benbahi, B., Hiadsi, S., Abidri, B., Vergoten, G., & Ghalouci, F. , "First principle investigation into hexagonal and cubic structures of gallium selenide," Computational Materials Science, vol. 67, no. 1, pp. 73-82, 2013.
[79] Xueping Li, Congxin Xia, Xiaohui Song, Juan Du, and Wenqi Xiong, "n-and p-type dopants in the InSe monolayer via substitutional doping," Journal of Materials Science, vol. 52, no. 12, pp. 7207-7214, 2017.
[80] G. W. Mudd, M. R. Molas, X. Chen, V. Zólyomi, K. Nogajewski, Z. R. Kudrynskyi, Z. D. Kovalyuk, G. Yusa, O. Makarovsky, L. Eaves, M. Potemski, V. I. Fal’ko and A. Patanè1, "The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals," Scientific Reports, vol. 6, no. 1, pp. 39619-39620, 2016.
[81] Garry W. Mudd ,Simon A. Svatek ,Tianhang Ren , Amalia Patanè , Oleg Makarovsky, Laurence Eaves Peter H. Beton ,Zakhar D. Kovalyuk , George V. Lashkarev, Zakhar R. Kudrynskyi , and Alexandr I. Dmitriev, "Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement," Advanced Materials, vol. 25, no. 40, pp. 5714-5718, 2013.
[82] A. Segura, J. P. Guesdon, J. M. Besson, and A. Chevy, "Photoconductivity and photovoltaic effect in indium selenide," Journal of applied physics, vol. 54, no. 2, pp. 876-888, 1983.
[83] Qasrawi, A. F., T. S. Kayed, and Khaled A. Elsayed, "Properties of Se/InSe Thin-Film Interface," Journal of Electronic Materials, vol. 45, no. 6, pp. 2763-2768, 2016.
[84] Gouskov, A., J. Camassel, and L. Gouskov., "Growth and characterization of III–VI layered crystals like GaSe, GaTe, InSe, GaSe1-xTex and GaxIn1-xSe," Progress in Crystal Growth and Characterization, vol. 5, no. 4, pp. 323-413, 1982.
[85] M Mobarak , H Berger , G F Lorusso , V Capozzi , M M Ibrahim and G Margaritondo, "The growth and characterization of GaInSe single crystals," Journal of Physics D: Applied Physics, vol. 30, no. 18, p. 2509, 1997.
[86] Nagat, T., Al-Orainy, R. H., Bahabri, F. S., Saed, E. M., & Elsaeedy, H. I. , "Transport Properties of GaInSe2 Crystals," Journal of American Science, vol. 8, no. 6, pp. 595-599, 2012.
[87] Kodigala, Subba Ramaiah., Cu (In1-xGax) Se2 Based thin film solar cells, Massachusetts: Academic Press, 2011.
[88] Bart Vermang , ViktorFjällström,JonasPettersson,PedroSalomé,MarikaEdoff, "Development of rear surface passivated Cu (In, Ga) Se 2 thin film solar cells with nano-sized local rear point contacts," Solar Energy Materials and Solar cells , vol. 117, no. 1, pp. 505-511, 2013.
[89] H. Neumann, "Optical properties and electronic band structure of CuInSe2," Solar Cells, vol. 16, no. 1, pp. 317-333, 1986.
[90] 劉士綸, "新型高效率超薄矽基異質接面太陽電池的元件結構設計模擬及製作," 國立中山大學, 高雄市, 2016.
[91] Neumann, H., Kissinger, W., Sobotta, H., Riede, V., & Kühn, G., "Hole effective masses in CuInSe2," physica status solidi (b), vol. 108, no. 2, pp. 483-487, 1981.
[92] T. S. E. a. S. K. Irie, "Electrical properties of p-and n-type CuInSe2 single crystals," Japanese Journal of Applied Physics, vol. 18, no. 7, p. 1303, 1979.
[93] J.A. Abushama, J. Wax, T. Berens, J. Tuttle, "Progress Toward Improved Device Performance in Large-Area Cu (In, Ga) Se2 Thin Film Solar Cells," 4th World conference on photovoltaic Energy Conversion, vol. 1, p. 487, 2006.
[94] M. I. Alonso, "Optical functions and electronic structure of CuInSe 2, CuGaSe 2, CuInS 2, and CuGaS 2.," Physical Review B, vol. 63, no. 7, p. 075203, 2001.
[95] E. Korhonen, "Vacancy defects in epitaxial thin film CuGaSe 2 and CuInSe 2," Physical Review B, vol. 86, no. 6, p. 064102, 2012.
[96] K. Masuko, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell," IEEE Journal of Photovoltaics , vol. 4, no. 6, pp. 1433-1435, 2014.
[97] J. C. Mikkelsen, "Ternary phase relations of the chalcopyrite compound CuGaSe2," Journal of Electronic Materials , vol. 10, no. 3, pp. 541-558, 1981.
[98] J. C. Bean, "Strained-layer epitaxy of germanium-silicon alloys," Science, vol. 230, no. 4722, pp. 127-131, 1985.
[99] S. Schuler, "Self-compensation of intrinsic defects in the ternary semiconductor CuGaSe2," Physical review B, vol. 69, no. 4, p. 045210, 2004.
[100] Braunstein, Rubin, Arnold R. Moore, and Frank Herman, "Intrinsic optical absorption in germanium-silicon alloys," Physical Review, vol. 109, no. 3, p. 695, 1958.
[101] Jedrecy, N., R. Pinchaux, and M. Eddrief, "Epitaxy of layered compounds: GaSe on Si (111)," Physical Review B, vol. 56, no. 15, p. 9583, 1997.
[102] R. Scheer, "Towards an electronic model for CuIn 1− x Ga x Se 2 solar cells," Thin Solid Films , vol. 519, no. 21, pp. 7472-7475, 2011.
[103] Hangleiter, A., and R. Häcker, "Enhancement of band-to-band Auger recombination by electron-hole correlations," Physical Review Letters, vol. 65, no. 2, p. 215, 1990.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code