Responsive image
博碩士論文 etd-0715117-210822 詳細資訊
Title page for etd-0715117-210822
論文名稱
Title
愛河沉積物中重金屬分佈之研究
Distribution of heavy metals in sediments of Love River
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-28
繳交日期
Date of Submission
2017-08-16
關鍵字
Keywords
愛河、底泥、富集因子、重金屬
sediment, enrichment factor, Love River, heavy metals
統計
Statistics
本論文已被瀏覽 5700 次,被下載 0
The thesis/dissertation has been browsed 5700 times, has been downloaded 0 times.
中文摘要
台灣地區隨著經濟成長和生活水準提高,各種污染物相對會增加,許多工廠廢水和民生污水在未經處理情況下,直接或間接進入承受水體,造成水體環境上的衝擊,包括重金屬、殺蟲劑等有害物質,伴隨來的是大量未經處理或處理不當廢污水,以致水質明顯惡化,最終沉降累積至底泥。本研究以愛河流域為研究對象,進行愛河流域水文、水質及底泥進行採樣與分析進行評估瞭解愛河流域汙染情形,應用底泥重金屬之富集因子(Enrichment Factor, EF)作為評估重金屬污染探討,並評估底泥中重金屬含量對生物可能之危害程度。研究結果顯示愛河水體水質,上游(後港橋)污染較中下游嚴重,評估指數介於中度污染至嚴重污染之間,推測因民族橋上游來至兩股支流排水(榮總排水及九番埤排水)匯入且未有截流設施導致水體中NH3-N及BOD含量偏高屬戊類水,該支流為愛河流域主要污染源,過民族橋後設有橡皮壩,上游水體透過橡皮壩截流至微笑礫間處理後再放流至愛河,減少中下游水體之負荷。愛河底泥重金屬,愛河流域上游(後港橋)測站之底泥(Cu及Zn)、中游(龍心橋)測站底泥(Cu及Zn)及下游(七賢橋)測站底泥重金屬中(Ni)含量皆高於我國底泥品質之分類管理辦及用途限制辦法規範中之下限值,上中下游三個測站底泥重金屬含量進行生物毒性影響評估,大致介於ERL-ERM值,對於水體生物危害性不大,顯示愛河底泥部分重金屬含量雖然已達我國底泥品質管制標準下限值,但對水體生物無立即之危害,再富集因子評估污染程度之嚴重性,後港橋之鎘前期濃度較高,所以富集因子呈現較高之情形(EF = 31.9),但後期濃度降低,使得富集因子有下降之情形,呈現中度之富集因子。在龍心橋方面,砷的濃度較高,所以呈現嚴重之富集因子,在後期將有呈現降低之趨勢,將不會污染周遭之環境。七賢橋前期之砷濃度亦呈現較高之濃度,呈現之富集因子為非常嚴重之情形,但後期監測結果砷之濃度呈現下降之趨勢,富集因子呈現未富集之狀態,大大減少砷對於環境之影響,本研究水文、水質及底泥評估之結果可供作為後續河川整治策略研擬之參考。
Abstract
Due to the growth of economy and living standards in Taiwan, various pollutants will increase, and many of the factories' wastewater and people's livelihoods will directly or indirectly enter the water body under untreated conditions, causing the impact of water environment. The commonly found pollutants in water bodies include heavy metals, insecticide agents and other harmful substances accompanied by a large number of untreated or treated wastewaters, which result in significant deterioration of water quality. Sediments are the final sinks of the pollutants. In this study, water and sediment sampling was performed and assessed for the Love River. The enrichment factor (Enrichment Factor, EF) was used to evaluate the heavy metal pollution. The extent of heavy metal content in the sediment to the biological hazard was assessed. The results show that the water quality of the upstream section of the river was higher than that of the middle and lower reaches, and the assessment index was between moderate pollution and serious pollution. This might be due to the facts that there were untreated wastewaters (containing high concentrations of ammonia and biochemical oxygen demand) flowed into the main stream, which resulted in the deterioration of the water quality. Results show that Cu and Zn in upstream and mid-stream sediments and Ni in downstream sediments were higher than the sediment standards. Results from the toxicity analyses show that the toxicity was in ERL-ERM levels, which had less impact on the ecosystem. The EF value for Cd reached 31.9 during the early investigation period at the Ho-Gang Bride station, then the value slowly dropped in the latter part of the investigation. Higher EF value for As was observed at the Long-Sing Bridge and Chi-hang Bridge stations. Decreased EF values were observed at these two stations in the last sampling season. Thus, the impacts of the heavy metals to the ecosystem was not significant. Results from this study are helpful in developing appropriate river and sediment management strategies.
目次 Table of Contents
目錄
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章前言 1
1.1研究緣起 1
1.2研究目的 2
第二章文獻回顧 3
2.1底泥的形成 3
2.2愛河環境背景 4
2.2.1 愛河地理位置 4
2.2.2 高雄愛河水文資料 6
2.2.3 愛河污染來源 7
2.3河川污染指數 9
2.4底泥中重金屬之特性 10
2.5重金屬於環境中的宿命與流佈 11
2.6愛河區域底泥之重金屬來源 12
2.7重金屬污染累積之富集因子 12
2.8底泥品質指標 15
2.9底泥品質參考準則 15
第三章研究方法與步驟 19
3.1底泥樣品採集 19
3.2河川水文及水質量測 21
3.2.1 河川水文量測 21
3.2.2 河川水質採樣方法 21
3.2.3 水質分析方法 21
3.3河川底泥採樣及分析 30
3.3.1 河川底泥採樣及分析 30
3.3.2 底泥重金屬品質指標 30
第四章採樣調查結果 34
4.1愛河水文調查結果 34
4.2愛河水質調查結果 38
4.2.1愛河水質調查結果 38
4.2.2 RPI河川污染指數評估 45
4.3愛河底泥調查結果 54
4.3.1 底泥調查結果 54
4.3.2 底泥基本性質 54
4.3.3愛河底泥重金屬分析與評估 58
4.4底泥之危害評估 63
第五章結論與建議 70
5.1結論 70
5.2建議 72
參考文獻 73

圖目錄
圖2-1 水體底泥的形成流程(Literathy et al., 1987) 3
圖2-2 愛河流域及支流圖 5
圖3-1 愛河水質、水文及底泥調查採樣點位 20
圖3-2 BOD分析碘定量法流程圖 24
圖3-3 COD樣品分析步驟 25
圖3-4 SS樣品分析步驟 26
圖3-5 導電度樣品分析步驟 27
圖3-6 E-coli樣品分析步驟 28
圖3-7 NH3-N樣品分析步驟 29
圖4-1 後港橋EF趨勢變化圖 65
圖4-2 龍心橋EF趨勢變化圖 66
圖4-3 七賢橋EF趨勢變化圖 66



表目錄
表2-1 愛河流域事業家數統計及污染排放種類 8
表2-2 河川污染指數(River Pollution Index,RPI) 9
表2-3 地殼中化學元素之含量值 14
表2-4 土壤污染監測標準 16
表2-5 土壤污染管制標準 16
表2-6 美國華盛頓州 Puget 灣底泥管制標準 17
表2-7 美國NOAA底泥生物危害標準 18
表2-8 加拿大安大略湖底泥生物危害標準 18
表3-1 水質檢測方法 22
表3-2底泥品質指標重金屬上、下限值 31
表4-1愛河水文調查資料-(1) 36
表4-1愛河水文調查資料-(2) 37
表4-2愛河支流水質調查結果-(1) 46
表4-2愛河支流水質調查結果-(2) 47
表4-2愛河支流水質調查結果-(3) 48
表4-3愛河支流水質調查結果-(1) 49
表4-3愛河支流水質調查結果-(2) 50
表4-3愛河支流水質調查結果-(3) 51
表4-4愛河流域水質調查結果 52
表4-5愛河主、支流水質指標 53
表4-6愛河底泥基本性質 57
表4-7愛河底泥重金屬品質評估-(1) 61
表4-7愛河底泥重金屬品質評估-(2) 62
表4-8富集因子等級與富集程度表 63
表4-9愛河各點位的富集因子主要為富集之區域 67
表4-10富集程度-(1) 67
表4-10富集程度-(2) 68
表4-10富集程度-(3) 68
表4-11 後港橋、龍心橋與七賢橋之富集因子 69
參考文獻 References
陳志峰,2005,高雄港區沉積物及底層水中重金屬之分佈探討,國立中山大學環境工程研究所碩士論文,高雄市。
陳忠勳,2008,人工濕地之水質淨化效益研究,中山大學環境工程研究所碩士論文,高雄市。
楊博名,2009,高雄港沉積物中重金屬分佈與累積之研究,國立高雄海洋科技大學海洋環境工程研究所碩士論文,高雄市。
許慈紋,2010,高雄港區沉積物中重金屬之時空評估分析及管理措施,國立台灣大學農業工程研究所碩士論文,台北市。
蔡育宜,2011,都會型河川之污染整治策略-以愛河為例,國立中山大學環境工程研究所碩士論文,高雄市。
鄭兆勛,2013,高雄愛河沉積物中砷元素分佈研究,國立台灣海洋大學海洋環境資訊系碩士論文,基隆市。
黃偉倫,2013,高雄愛河及河口沉積物重金屬分佈之研究,國立高雄海洋科技大學海洋環境工程研究所碩士論文,高雄市。
張永昌,2013,高屏溪下游地區沉積物中重金屬污染評估,輔英科技大學環境工程系碩士論文,高雄市。
曹婉如2014,高雄愛河沉積物重金屬元素分佈研究,國立台灣海洋大學海洋環境資訊系碩士論文,基隆市。
行政院環保署網站:http://www.epa.gov.tw,2017 年 5 月。
行政院環保署環境檢驗所網站:http://www.niea.gov.tw,2017 年 5 月。
高雄市政府工務局下水道工程處:http://pwse.kcg.gov.tw/sewer.asp, 2017 年 5 月。
Borg, H., Andersson, P., Nyberg, P., and Olofsson, E. (1995). Influence of wetland liming on water chemistry of acidified mountain streams in Lofsdalen, Central Sweden. Water Air Soil Pollut., 85(2), 907-912.
Braskerud, B.C., (2001). The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands. J. Environ. Qual., 30(4), 1447-1457.
Browning, C., (2003). Nutrient Removal and Plant Growth in a Subsurface Flow Constructed Wetland in Brisbane. School of Environmental Engineering Faculty of Environmental Sciences Griffith University, Nathan, Australia.
Carbonell, A.A., Aarabi, M.A., de Laune, R.D., Gambrell, R.P. and Patrick Jr., W.H., (1998). Bioavailability and uptake of arsenic by wetland vegetation: Effects on plant growth and nutrition. J. Environ. Sci. Health, Part A, Environ. Sci. Eng., 33(1), 45-66.
Chang, W.L. and Tang, J.L., (1996). Application of multivariate statistical method to analyze irrigation water pollution in Taipei suburb. Journal of Taiwan Water Conservancy, 44(3), 54-66.
Chen, T.Y., Kao, C.M., Yeh, T.Y., Chien, H.Y. and Chao, A.C. (2006). Application of a constructed wetland for industrial wastewater treatment: A pilot-scale study, Chemosphere, 64(3), 497-502.
Ciria, M.P., Solano, M.L.,and Soriano, P., (2005). Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosyst. Eng., 92(4), 1537-5110.
Chen, C.W., Chen, C.F. and Dong, C.D., (2014).Distribution and Enrichment Evaluation of Cadmium in the Sediments of Canon River Mouth, Taiwan.Energy Procedia 16 (2011), 895-900.
de Mars, H., (1997). Interrelationship between water quality and groundwater flow dynamics in a small wetland system along a sandy hill ridge. Hydrol. Process., 11(4), 335-351.
Dipak Paul.,(2017). Research on heavy metal pollution of river Ganga:A review. Annals of Agrarian Science 15(2017), 278-286.
El-Din A.G. and Smith, D.W., (2002). A combined transfer-function noise model to predict the dynamic behavior of a full-scale primary sedimentation tank. Water Res., 36(15), 3747-3764.
Garcia, M., Soto, F., Gonzalez, J.M. and Becares, E., (2008). A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems. Ecological Engineering, 32(3), 238-243.
Gau, H.S., Chen, T.C., Chen, J.S. and Liu, C.W., (2007). Time series decomposition of groundwater level changes in wells due to the Chi-Chi earthquake in Taiwan: a possible hydrological precursor to earthquakes. Hydrol. Process., 21(4), 510-524.
Gu, B., Chimney M.J., Newman J., Nungesser M.K., (2006). Limnological characteristics of a subtropical constructed wetland in south Florida (USA). Ecological Engineering, 27(4), 268-278.
Hensel, B.R. and Miller, M.V., (1991). Effects of wetlands creation on groundwater flow. J. Hydrol., 126(3-4), 293-314.
Hernández-Romero, A.H., Tovilla- -Hernández, C., Malo, E.A. and Bello-Mendoza, R., (2007). Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Marine Pollution Bulletin, 48(11-12), 1130-1141.
Hu, M.H., Ao, Y.S., Yang, X.E. and Li, T.Q., (2008). Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system. Agric. Water Manage., 95(5), 607-615.
Imfeld, G., Braeckevelt, M., Kuschk, P. and Richnow, H.H., (2009). Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere, 74(3), 349-362.
Jing, S.R. and Lin, Y.F., (2004). Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan. Environ. Pollut., 127(2), 291-301.
Kadlec, R.H. and Bevis, F.B., (2009). Wastewater treatment at the Houghton Lake wetland: Vegetation response. Ecological Engineering, 35(9), 1312-1332.
Kadlec, R.H. and Reddy, K.R., (2001). Temperature effects in treatment wetlands. Water Environ. Res., 73(5), 543-557.
Kadlec, R.H. and Wallace, S.D., (2009). Treatment Wetlands. 2nd, Taylor & Francis Group, LLC, NW, U.S.A.
Kadlec, R.H., (2005). Phosphorus removal in emergent free surface wetlands. J. Environ. Sci. Health, Part A, Environ. Sci. Eng., 40(6), 1293-1306.
Kadlec, R.H., (2006). Free surface wetlands for phosphorus removal: The position of the Everglades Nutrient Removal Project. Ecological Engineering, 27(4), 361-379.
Kadlec, R.H., (2008). The effects of wetland vegetation and morphology on nitrogen processing. Ecological Engineering, 33(2), 126-141.
Kadlec, R.H., (2009a). Comparison of free water and horizontal subsurface treatment wetlands. Ecological Engineering, 35(2), 2009, 159-174.
Kadlec, R.H., (2009b). Wastewater treatment at the Houghton Lake wetland: Hydrology and water quality. Ecological Engineering, 35(9), 1287-1311.
Kadlec, R.H., (2009c). Wastewater treatment at the Houghton lake wetland: Soils and sediments. Ecological Engineering, 35(9), 1333-1348.
Kadlec, R.H., (2009d). Wastewater treatment at the Houghton Lake wetland: Temperatures and the energy balance. Ecological Engineering, 35(9), 1349-1356.
Kivaisi, A.K., (2001). The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecological Engineering, 16(4), 545-560.
Kjellin, J., Wörman, A., Johansson, H. and Lindahl, A., (2007). Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden. Advances in Water Resources, 30(4), 838-850.
Klomjek, P. and Nitisoravut, S., (2005). Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere, 58(5), 585-593.
Knight, R.L., (1997). Wildlife habitat and public use benefits of treatment wetlands. Water Sci. Technol., 35(5), 35-43.
Landin, M.C., Dardeau Jr., E.A., and Miller, J.L., (1992). Wetland restoration and creation guidelines for mitigation, Water resources planning and management: Saving a threatened resource- In search of solutions. Proceedings of the Water Resources Sessions at Water Forum. 439-444.
Lee, M.S., Kao, C.M., Yeh, T.Y., Wu, T.N. and Hong, J.L., (2004). Application of a constructed wetland for industrial wastewater treatment. UNEP 2nd International Conference on Environmental Concerns: Innovative Technologies and Management Options, Xiamen, China, 1412-1417.
Li, E.H., Li, W., Liu, G.H. and Yuan, L.Y., (2008). The effect of different submerged macrophyte species and biomass on sediment resuspension in a shallow freshwater lake. Aquat. Bot., 88(2), 121-126.
Liao S.W. and Chang W.L., (2004). Interpretation of soil properties in Kuan-Tu wetlands, Taiwan. Pract. Period. Hazard., Toxic, Radioact. Waste Manag., 8(3), 199-207.
Lim, P.E., Wong, T.F. and Lim, D.V., (2001). Oxygen demand, nitrogen and copper removal by free-water-surface and subsurface-flow constructed wetlands under tropical conditions. Environ. Int., 26(5-6), 425-431.
Lin, Y.F., Jing, S.R., Lee, D.Y. and Wang, T.W., (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209(1-4), 169-184.
Mir, M.A., Mohammad, L.A., Md, S.I. and Md, Z.R., (2016). Preliminary assessment of heavy metals in water and sediment ofKarnaphuli River, Bangladesh. Environmental Nanotechnology, Monitoring & Management 5(2016), 27-35.
Mohamed, E.G., Hassan, I.F., Mohamed, H.A. and Salem, G.S., (2014). Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egyptian Journal of Aquatic Research 40 (2014), 213–224.
Maine, M.A., Suñe, N., Hadad, H., Sánchez G. and Bonetto C., (2006). Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecological engineering, 26(4), 341-347.
Maine, M.A., Sune, N., Hadad, H., Sánchez, G. and Bonetto, C., (2007). Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Chemosphere, 68(6), 1105-1113.
Mitsch, W.J. and Gosselink, J.G., (2000). The value of wetlands: importance of scale and landscape setting. Ecological Economics, 35(1), 25-33.
Mitsch, W.J. and Gosselink, J.G., (2000). Wetlands. 3rd ed. John Wiley, New York.
Mitsch, W.J., Day, J.W., Zhang, L. and Lane, R.R., (2005). Nitrate-nitrogen retention in wetlands in the Mississippi River Basin. Ecological Engineering, 24(4), 267-278.
Mungur, A.S., Shutes, R.B.E., Revitt, D.M. and House, M.A., (1997). An assessment of metal removal by a laboratory scale wetland. Water Sci. Technol., 35(5), 125-133.
Nahlik, A.M. and Mitsch, W.J., (2006). Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering, 28(3), 246-257.
Pekárová, P., Onderka, M., Pekár, J., Rončák, P. and Miklánek, P., (2009). Prediction of water quality in the Danube River under extreme hydrological and temperature conditions. Journal of Hydrology and Hydromechanics, 57(1), 3-15.
Reddy, K.R., Kadlec, R.H., Flaig, E. and Gale, P.M., (1999). Phosphorus retention in streams and wetlands: A review. Critical Reviews in Environmental Science and Technology, 29(1), 83-146.
Reinoso, R., Torresa, L.A. and Bécaresb, E., (2008). Efficiency of natural systems for removal of bacteria and pathogenic parasites from wastewater. Sci. Total Environ., 395(2-3), 80-86.
Saunders, D.L. and Kalff, J., (2001). Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia, 443(1-3), 205-212.
Siracusa, G. and La Rosa, A.D., (2006). Design of a constructed wetland for wastewater treatment in a Sicilian town and environmental evaluation using the energy analysis. Ecol. Modell., 197(3-4), 490-497.
Spieles, D.J. and Mitsch, W.J., (2000). The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low-and high-nutrient riverine systems. Ecological Engineering, 14(1-2), 77-91.
Svetlíková, D., Kohnová, S., Szolgay, J., Komorníková, M. and Hlavčová, K., (2009). Analysis of monthly discharge and precipitation time series for selected wetlands in Slovakia. International Symposium on Water Management and Hydraulic Engineering, Ohrid, Macedonia, 827-840.
Svetlíková, D., Komorníková, M., Kohnová, S., Szolgay, J. and Hlavčová, K., (2008). Analysis of discharge and rainfall time series in the region of the Káštorské lúky wetland in Slovakia. International Symposium on Water Management and Hydraulic Engineering, Ohrid, Macedonia.
Tanaka, N., Jinadasa, K.B.S.N., Werellagama, D.R.I.B., Mowjood, M.I.M. and Ng, W.J., (2006). Constructed tropical wetlands with integrated submergent-emergent plants for sustainable water quality management. J. Environ. Sci. Health, Part A, Environ. Sci. Eng., 41(1-2), 2221-2236.
Thullen, J.S., Sartoris, J.J. and Walton, W.E., (2002). Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production. Ecological Engineering, 18(4), 441-457.
Verhoeven, J.T.A. and Meuleman, A.F.M., (1999). Wetlands for wastewater treatment: Opportunities and limitations. Ecological Engineering, 12(1-2), 5-12.
Vymazal, J., (2005). Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: A review. J. Environ. Sci. Health, Part A, Environ. Sci. Eng., 40(6), 1355-1367.
Vymazal, J., (2007). Removal of nutrients in various types of constructed wetlands. Sci. Total Environ., 380(1-3), 48-65.
Vymazal, J., (2007). Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 380(1-3), Pages 48-65
Werker, A.G., Dougherty, J.M., McHenry, J.L. and Van Loon, W.A., (2001). Treatment variability for wetland wastewater treatment design in cold climates. Ecological Engineering, 19(1), 1-11.
Wu, T.N., Huang, Y.C., Lee, M.S. and Kao, C.M., (2005). Source identification of groundwater pollution with the aid of multivariate statistical analysis. IWA Specialist Group Conference on Water Economics, Statistics, and Finance, Rethymno, Greece, 353-359.
Yang, L., Chang, H.T. and Huang, M.L., (2001). Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation. Ecological Engineering, 18(1), 91-105.
Yeh, T.Y., (2008). Removal of metals in constructed wetlands: Review. American Society of Civil Engineers, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(2), 96-101.
Yeh, T.Y., Chou, C.C. and Pan, C.T., (2009). Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination, 249, 368-373.
Yeh, T.Y., Pan, C.T., Ke, T.Y. and Kuo, T.W., (2010). Organic matter and nitrogen removal within field-scale constructed wetlands: Reduction performance and microbial identification studies. Water Environment Research, 82, 27-33.
Yurekli, K. and Kurunc, A., (2006). Simulating agricultural drought periods based on daily rainfall and crop water consumption. Journal of Arid Environments, 67(4), 629-640.
Zhao, Q., Zhou, L., Zheng X., Wang Y. and Lu, J., (2015). Study on enzymatic activities and behaviors of heavy metal in sediment–plant at muddy tidal flat in Yangtze Estuary. Environmental Earth Sciences,73(7). 3207-3216.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.175.120.161
論文開放下載的時間是 校外不公開

Your IP address is 54.175.120.161
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code