Responsive image
博碩士論文 etd-0715117-212900 詳細資訊
Title page for etd-0715117-212900
論文名稱
Title
單孔霧化片之噴霧流場及熱傳特性分析
Flow Field and Heat Transfer Characteristics Analysis of Water Spray through a Single Micro-nozzle Plate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-26
繳交日期
Date of Submission
2017-08-15
關鍵字
Keywords
μLIF、IPI、μPIV、螢光染劑、ITO透明加熱板、單孔霧化片
single micro-nozzle, μPIV, fluorescence, ITO, atomization piezoelectric plate, μLIF, IPI
統計
Statistics
本論文已被瀏覽 5705 次,被下載 458
The thesis/dissertation has been browsed 5705 times, has been downloaded 458 times.
中文摘要
本實驗主要探討35μm孔徑的超音波單孔霧化片在ITO透明加熱板上進行冷卻,觀察液滴在不同初始溫度下的飛行狀態及接觸加熱板時的現象。所使用的工作流體為去離子水,主要參數為加熱板初始溫度(Tin=25、50、100、150、200 oC)及噴霧距離(H=10、20、30mm),透過微質點影像測速儀(μPIV)和全像干涉粒徑分析儀(IPI)進行噴霧流場拍攝與分析,分析液滴流場的速度分佈及粒徑變化情形,接著再利用雷射誘發微螢光系統(μLIF)來量測溫度場之變化,螢光染劑為Rhodamine B,濃度為1.5×10-4 M。最後,討論不同板溫及噴霧高度下的流況變化以及物理現象,以得到最佳的CHF。
Abstract
In this study, we investigated the spray cooling effect with a 35μm diameter of single micro-nozzle, atomization piezoelectric plate, on the ITO heating plate, and observed the phenomenon of water droplets during flying with different initial surface temperature (Tin = 25, 70, 110, 150 and 200 oC) and spray hight (H = 10, 20 and 30mm). Through the micro-particle image velocimeter (μPIV) and interferometric particle imaging (IPI), we can catch the droplets velocity distribution and particle size evolutional, and then the planar laser-induced fluorescence (μLIF) with Rhodamine B in a concentration of 1.5 × 10-4 M as a fluorescent dye can show the temperature change of liquid film. Finally, the change of flow field and physical phenomena at different plate temperatures and spray heights are discussed to obtain the best CHF.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
Contents v
LIST OF TABLES vii
LIST OF FIGURES viii
CHAPTER 1 INTRODUCTION 1
1-1 Introduction remarks 1
1-2 Background 1
1-3 Literature review 3
1-4 Research purpose 19
CHAPTER 2 EXPERIMENTAL SYSTEM AND EQUIPMENT 21
2-1 Micrometer resolution particle image velocimetry 21
2-2 Supersonic micro nozzle piezoelectric plate 23
2-3 ITO heating plate 23
2-4 Data acquisition system 24
2-5 Other experimental equipment 25
CHAPTER 3 EXPERIMENTAL METHODS AND PROCEDURES 35
3-1 ITO transparent heating plate 35
3-2 Spray cooling system 35
3-3 Optical measurement system 36
3-4 Experimental method 40
3-5 Experimental process 41
CHAPTER 4 THEORETICAL ANALYSIS 48
4-1 Sauter mean diameter (d32) 48
4-2 The definition of Weber number (We) 49
4-3 The definition of Nuseelt number (Nu) 49
4-4 Calculation of the volume flux (Qi) 49
CHAPTER 5 UNCERTAINTY ANALYSIS 51
CHAPTER 6 RESULT AND DISCUSSION 55
6-1 Flow field of single micro-nozzle plate 55
6-2 μIPI droplets in single micro-nozzle plate 57
6-3 μLIF temperature field 58
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 85
7-1 Conclusions 85
7-2 Recommendations and Suggestions 86
References 87
Appendix A 96
參考文獻 References
[1] R.R. Perron, “The Design and Application of a Reliable Ultransonic Atomizer”, IEEE Transactions on Sonics and Ultrasonics, Vol.14, 1967, pp.149-152.
[2] L. H. J. Wachters and N. A. J. Westerling, "The Heat Transfer from a Hot Wall to Impinging Water Drops in the Spheroidal State," Chemical Engineering Science, Vol. 21, 1966, pp. 1047-1056.
[3] D. E. Titon, M. R. Pais, and L. C. Chow, "High Power Density Spray Cooling," Technical Report, Wright Research & Development Center,1989, WRDC-TR-89-2082.
[4] M. Ghodbane and J. P. Holman, "Experimental Study of Spray Cooling with Freon-113," International Journal of Heat and Mass Transfer, Vol.34, 1991, pp. 1163-1174.
[5] M. S. Sehmbey, M. R. Pais, and L. C. Chow, "Effect of Surface Material Properties and Surface Characteristics in Evaporative Spray Cooling," Journal of Thermophysics and Heat Transfer, Vol. 6, 1992,pp. 505-512.
[6] M. R. Pais, L. C. Chow, and E.T. Mahefkey, "Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling," Journal of Heat Transfer -Transactions of the ASME, Vol. 114, 1992, pp.211-219.
[7] T. Oka, Y. Abe, Y. H. Mori, and A. Nagashima, "Pool Boiling of n-Pentane, CFC-113, and Water under Reduced Gravity: Parabolic Flight Experiments with a Transparent Heater," Journal of HeatTransfer -Transactions of the ASME, Vol. 117, 1995, pp. 408-417.
[8] M. Kato, Y. Abe, Y. H. Mori, and A. Nagashima, "Spray Cooling Characteristics under Reduced Gravity," Journal of Thermophysics and Heat Transfer, Vol. 9, 1995, No. 2, pp. 378-381.
[9] K. A. Estes and I. Mudawar, "Correlation of Sauter Mean Diameter and Critical Heat Flux for Spray Cooling of Small Surfaces," International Journal of Heat and Mass Transfer, Vol. 38, 1995, pp.2895-2996.
[10] S. Chandra, M. D. Marzo, Y. M. Qiao, and P. Tartarini, "Effect of Liquid-Solid Contact Angle on Droplet Evaporation," Fire Safety Journal, Vol. 27, 1996, pp. 141-158.
[11] J. Yang, L. C. Chow, and M. R. Pais, "Nucleate Boiling Heat Transfer in Spray Cooling," Journal of Heat Transfer -Transactions of the ASME, Vol. 118, 1996, pp. 668-671.
[12] I. Mudawar and K. A. Estes, "Optimizing and Predicting CHF in Spray Cooling of a Square Surface," Journal of Heat Transfer –Transactions of the ASME, Vol. 118, 1996, pp. 672-679.
[13] J. E. Gonzalez and W. Z Black, "Study of Droplet Sprays Prior to Impact on a Heated Horizontal Surface," Journal of Heat Transfer -Transactions of the ASME, Vol. 119, 1997, pp. 279-287.
[14] D. B. John, J. S. Clinton, and I. Mudawar, "Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface," International Journal of Heat and Mass Transfer, Vol. 40, 1997, pp. 247-267.
[15] K. Oliphant, B. W. Webb, and M. Q. Mcquay, "An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-boiling Regime," Experimental Thermal and Fluid Science, Vol. 18, 1998, pp. 1-10.
[16] J. J. Huddle, L. C. Chow, S. Lei, A. Marcos, D. P. Rini, S. J. Lindauer II, M. Bass, and P. J. Delfyett, "Thermal Management of Diode Laser Arrays," Semiconductor Thermal Measurement and Management Symposium, Sixteenth Annual IEEE, 2000, pp. 154 -160.
[17] J. Y. Murthy, C. H. Amon, K. Gabriel, P. Kumta, S. C. Yao, D. Boyalakuntla, C. C. Hsieh, A. Jain, S. V. Narumanchi, K. Rebello, and C. F. Wu, "MEMS-Based Thermal Management of Electronics Using Spray Impingement," Proceedings of IPACK’01 The Pacific Rim/ASME International Electronic Packaging, July 8-13, Kauai, Hawaii, USA, 2001, pp. 1-12.
[18] G. Aguilar, W. Verkruysse, B. Majaron, L. O. Svaasand, E. J. Lavernia, and J. S. Nelson, "Measurement of Heat Flux and Heat Transfer Coefficient During Continuous Cryogen Spray Cooling for Laser Dermatologic Surgery," IEEE J. Sel. Top. Quantum Electron., Vol. 7, 2001, pp. 1013-1021.
[19] B. M. Pikkula, J. H. Torres, J. W. Tunnel, and B. Anvari, "Cryogen Spray Cooling: Effect of Droplet Size and Spray Density on Heat Removal," Lasers in Surgery and Medicine, Vol. 28, 2001, pp. 103-112.
[20] W. Jia and H. H. Qiu, "Experimental Investigation of Droplet Dynamics and Heat Transfer in Spray Cooling," Experimental Thermal and Fluid Science, Vol. 27, 2003, pp. 829-838.
[21] L. Lin and R. Ponnappan, "Heat Transfer Characteristics of Spray Cooling in a Closed Loop," International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 3737-3746.
[22] S. -S. Hsieh, T. C. Fan, and H. H. Tsai, "Spray Cooling Characteristics of Water and R-134a. Part I: Nucleate Boiling," International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5703-5712.
[23] S. -S. Hsieh, T. C. Fan, and H. H. Tsai, "Spray Cooling Characteristics of Water and R-134a. Part II: Transient Cooling," International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5713-5724.
[24] J. H. Kim, S. M. You, and U. S. Choi, "Evaporative Spray Cooling of Plain and Microporouscoated Surfaces," International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 3307-3315.
[25] B. Horacek, K.T. Kiger, and J. Kim, "Single Nozzle Spray Cooling Heat Transfer Mechanisms," International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 1425-1438.
[26] A. G. Pautsch and T. A. Shedd, "Spray Impingement Cooling with Single- and Multiple-nozzle Arrays. Part I: Heat Transfer Data Using FC-72," International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3167-3175.
[27] A. G. Pautsch and T. A. Shedd, "Spray Impingement Cooling with Single- and Multiple-nozzle Arrays. Part II: Visualization and Empirical Models," International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3176-3184.
[28] J. R. Rybicki and I. Mudawar, "Single-Phase and Two-Phase Cooling Characteristics of Upward-Facing and Downward-Facing Sprays," International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 5-16.
[29] C. C. Hsieh and S. C. Yao, "Evaporative Heat Transfer Characteristics of a Water Spray on Micro-Structured Silicon Surfaces," International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 962-974.
[30] S. -S. Hsieh and H. H. Tsai, "Thermal and Flow Measurements of Continuous Cryogenic Spray Cooling," Archives of Dermatological Research, Vol. 298, 2006, pp. 82-96.
[31] B. Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian, "Spray Angle Effect During Spray Cooling of Microelectronics: Experimental Measurements and Comparison with Inverse Calculations," Applied Thermal Engineering, Vol. 26, 2006, pp. 1788-1795.
[32] J. E. Guinn and D. Banerjee, "Experimental Study of Nanofluids for Droplet Cooling Applications Using Temperature Microsensors," Proceeding of the ASME International Mechanical Engineering Congress and Exposition, No. IMECE2006-14101, Vol. 2, 2006, pp. 251-258.
[33] S. -S. Hsieh and C. H. Tien, "R-134a Spray Dynamics and Impingement Cooling in the Non-Boiling Regime," International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 502-512.
[34] A. Bansal and F.Pyrtle III, "Alumina Nanofluid for Spray Cooling Enhancement," Proceeding of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, No. HT2007-32485, Vol. 1, 2007, pp. 797-803.
[35] M. Visaria and I. Mudawar, "Effects of High Subcooling on Two-Phase Spray Cooling and Critical Heat Flux," International Journal of Heat and Mass Transfer, Vol. 51, 2008, pp. 5269-5278.
[36] H. Bostanci, D. P. Rini, J. P. Kizito, and L. C. Chow, "Spray Cooling With Ammonia on Microstructured Surfaces: Performance Enhancement and Hysteresis Effect," Journal of Heat Transfer -Transactions of the ASME, Vol. 131, 2009, 071401 (9 pp.).
[37] J. Shen, J. A. Liburdy, D. V. Pence, and V. Narayanan, "Droplet Impingement Dynamics: Effect of Surface Temperature during Boiling and Non-boiling Conditions," Journal of Physics: Condensed Matter, Vol. 21, 2009, 464133 (14 pp.)
[38] R. Srikar, T. Gambaryan-Roisman, C. Steffes, P. Stephan, C. Tropea, and A. L. Yarin, "Nanofiber Coating of Surfaces for Intensification of Drop or Spray Impact Cooling," International Journal of Heat and Mass Transfer, Vol. 52, 2009, pp. 5814-5826.
[39] G. Duursma, K. Sefiane, and A. Kennedy, "Experimental Studies of Nanofulid Droplets in Spray Cooling," Heat Transfer Engineering, Vol. 30, 2009, Issue 13, pp. 1108-1120.
[40] Y. Wang, M. Liu, D. Liu, K. Xu, and Y. Chen, "Experimental Study on the Effects of Spray Inclination on Water Spray Cooling Performance in Non-boiling Regime," Experimental Thermal and Fluid Science, Vol. 34, 2010, pp. 933-942.
[41] D. S. Zhu, J. Y. Sun, S. D. Tu, and Z. D. Wang, "Experimental Study of Non-boiling Heat Transfer by High Flow Rate Nanofluids Spray," The 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, Vol. 1207, 2010, pp. 476-482.
[42] H. Bellerova, M. Pohanka, M. Raudensky, and A. A. Tseng, "Spray Cooling by Al2O3 and TiO2 Nanoparticles in Water," Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 12th IEEE Intersociety Conference, 2010, doi:10.1109/ITHERM.2010.5501333.
[43] S. a. d. Wiesche, U. Bardas, and S. Uhkötter, "Boiling Heat Transfer on Large Diamond and SiC Heaters: The Influence of Thermal Wall Properties," International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 1886-1895.
[44] H. Bellerova, A. A. Tseng, M. Pohanka, and M. Raudensky, "Spray Cooling by Solid Jet Nozzles Using Alumina/Water Nanofluids," International Journal of Thermal Sciences, 2011, doi:10.1016/j. ijthermalsci.2011.10.017.
[45] H. Bellerova and M. Pohanka, "Spray Cooling by Multi-walled Carbon Nanotubes and Fe Nanoparticles," International Journal of Computational Methods and Experimental Measurements, Computational Method and Experimental Measurements XV, 2011, pp. 293-304.
[46] T. B. Chang, S. C. Syu, and Y. K. Yang, "Effects of Particle Volume Fraction on Spray Heat Transfer Performance of Al2O3-Water Nanofluid," International Journal of Heat and Mass Transfer, Vol. 55, 2012, Issue 4, pp. 1014-1021.
[47] T. Okawa, K. Nagano, and T. Hirano, "Boiling Heat Transfer During Single Nanofluid Drop Impacts onto A Hot Wall," Experimental Thermal and Fluid Science, Vol. 36, 2012, pp. 78-85.
[48] Y. Hou, X. Liu, J. Liu, M. Li, and L. Pu, "Experimental study on phase change spray cooling, " Experimental Thermal and Fluid Science, Vol.46, 2013,pp.84-88.
[49] J. P. McHale and S. V. Garimella, "Nucleate Boiling from Smooth and Rough Surfaces-Part1: Fabrication and Characterization of an Optically Transparent Heater-Sensor Substrate with Controlled Surface Roughness," Experimental Thermal and Fluid Science, Vol.44, 2013, pp.456-467.
[50] J. P. McHale and S. V. Garimella, "Nucleate Boiling from Smooth and Rough Surfaces-Part2: Analysis of Surface Roughness Effects on Nucleate Boiling," Experimental Thermal and Fluid Science, Vol.44, 2013, pp.439-455.
[51] Z. Zhang, J. Li, and P.-X. Jiang, "Experimental Investigation of Spray Cooling on Flat and Enhanced Surfaces, " Applied Thermal Engineering, Vol.51, 2013, pp.102-111.
[52] S. J. Thiagarajan, S. Narumanchi, and R. Yang, "Effect of Flow Rate and Subcooling on Spray Heat Transfer on Microporous Copper Surfaces," International Journal of Heat and Mass Transfer, Vol. 69, 2014, pp. 493-505.
[53] A.K. Mozumder, Y. Mitsutake, and M. Monde, "Subcooled Water Jet Quenching Phenomena for a High Temperature Rotating Cylinder, " International Journal of Heat and Mass Transfer, Vol.68, 2014, pp.466-478.
[54] H. Bostanci, D.P. Rini, J.P. Kizito, V. Singh, S.Seal, and L.C. Chow, "High Heat Flux Spray Cooling With Ammonia Investigation of Enhanced Surfaces for HTC, " International Journal of Heat and Mass Transfer, Vol.75, 2014, pp.718-725.
[55] Z. Zhang, P.-X. Jiang, X-L Ouyang, J-N Chen, and D.M. Christopher, "Experimental Investigation of Spray Cooling on Smooth and Micro-Structured Surfaces," International Journal of Heat and Mass Transfer, Vol.76, 2014, pp.366-375.
[56] T. Orzechowski and S. Weislik, "Instantaneous Heat Transfer for Large Drops Levitating Over a Hot Surface," International Journal of Heat and Mass Transfer, Vol.73, 2014, pp.110-117.
[57] R. Xu, L. Li, L. Zhang, B. Zhu, X. Liu, and X. Bu, "Influence of Pressure and Surface Roughness on The Heat Transfer Efficiency During Water Spray Quenching of 6082 Aluminum Alloy," Journal of Materials Processing Technology, Vol.214, 2014, pp.2877-2883.
[58] S. Sarangi, J.A. Weibel, and S.V. Garimella, "Effect of Particle Size on Surface-Coating Enhancement of Pool Boiling Heat Transfer," International Journal of Heat and Mass Transfer, Vol.81, 2015, pp.103-113.
[59] Z. Zhang, P.-X. Jiang, D.M. Christopher, and X.-G. Liang, "Experimental Investigation of Spray Cooling on Micro-,Nano-,and Hybrid-Structured Surfaces, " International Journal of Heat and Mass Transfer, Vol.80, 2015, pp.26-37.
[60] J. Bi, K. Vafai, and D.M. Christopher, "Heat Transfer Characteristics and CHF Prediction in Nanofluid Boiling," International Journal of Heat and Mass Transfer, Vol.80, 2015, pp.256-265.
[61] S. Chen, J. Liu, X. Liu, and Y. Hou, "An Expeimental Comparison of Heat Transfer Characteristic Between R134-a and R22 in Spray Cooling, " Experimental Thermal and Fluid Science, Vol.66, 2015, pp.206-212.
[62] M. C. J. Coolen, R. N. Kieft, C. C. M. Rindt, and A. A. van Steenhoven, "Application of 2-D Lif Temperature Measurements in Water Using a Nd : Yag Laser," Experiments in Fluids, Vol. 27, 1999, pp. 420-426.
[63] D. Ross, M. Gaitan, and L. E. Locascio, "Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye," Analytical Chemistry, Vol. 73, 2001, pp. 4117-4123.
[64] A. H. Lefebvre, Atomization and Sprays, Hemisphere Pulishing Corporation, 1989, New York.
[65] S. Kline and F. A. McClintock, "Describing Uncertainties in Single-Sample Experiments," Mechanical Engineering, Vol. 75, 1953, pp. 3-8.
[66] R. J. Moffat, "Contributions to the Theory of Single-Sample Uncertainty Analysis," Journal of Fluids Engineering, Vol.104, 1982, pp. 250-258.
[67] J. R. Taylor, An Introduction to Error Analysis, University Science Books, 1997, Sausalito, California.
[68] S.S. Hsieh and S.Y. Luo, "Droplet impact dynamics and transient heat transfer of a micro spray system for power electronics devices," International Journal of Heat and Mass Transfer, Vol.92, 2016, pp. 190-205.
[69] J.L. Xie, Z.W. Gan, T.N. Wong, F. Duan, S.C.M. Yu, Y.H. Wu, "Thermal effects on a pressure swirl nozzle in spray cooling", International Journal of Heat and Mass transfer, Vol. 73, 2014, pp. 130-140.
[70] H. Chen, W.L. Cheng, Y.H. Peng, W.W. Zhang, L.J. Jiang, "Experimental study on optimal spray parameters of piezoelectric atomizer based spray cooling", International Journal of Heat and Mass transfer, Vol. 103, 2016, pp.57-65.
[71] S.S. Hsieh, G.W. Chen, and Y. F. Yeh, "Optical flow and thermal measurements for spray cooling", International Journal of Heat and Mass Transfer, Vol.87, 2015, pp. 248-253.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code