Responsive image
博碩士論文 etd-0715118-003404 詳細資訊
Title page for etd-0715118-003404
論文名稱
Title
發現養殖型沙島指形軟珊瑚所含新天然物和研究 7-Acetylsinumaximol B 引發癌細胞凋亡與 Dihydroaustrasulfone Alcohol 抑制癌細胞轉移的分子機制
Discovery of New Natural Products from Cultrued Soft Coral Sinularia sandensis and Investigation of Molecular Mechanisms of Apoptosis Induced by 7-Acetylsinumaximol B and Anti-metastasis of Dihydroaustrasulfone Alcohol on Cancer Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
210
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-13
繳交日期
Date of Submission
2018-08-15
關鍵字
Keywords
移動、侵入、內質網壓力、自體吞噬、細胞凋亡、立體構形
apoptosis, endoplasmic reticulum stress, configuration, autophagy, migration, invasion
統計
Statistics
本論文已被瀏覽 5691 次,被下載 278
The thesis/dissertation has been browsed 5691 times, has been downloaded 278 times.
中文摘要
從養殖型沙島指形軟珊瑚Sinularia sandensis中萃取分離得到11個天然化合物,包含2個新的煙草烷類化合物 (cembranoid),4-carbomethoxyl-10-epigyrosanoldie E (1) 和7-acetylsinumaximol B (2);4個已知煙草烷類化合物 sinumaximol B (3)、sinulacembranolide A (4)、pukalide (5) 和 10-epigyrosanolide E (6);2個已知furanosesquiterpene 類化合物methyl (1′E,5′E)-5-(2′,6′-dimethylocta-1′,5′,7′-trienyl) furan-3-carboxylate (7)和(1′E,5′E)-5-(2′,6′-dimethylocta-1′,5′,7′-trienyl)furan-3- carboxylic acid (8) ;3個已知固醇類化合物 24-methylenecholestane-3β,5α,6β-triol (9)、11α-acetoxy-24-methylenecholesta-3β,5α,6β-triol (10)和11α-acetoxy-24- methylenecholesta-1α,3β,5α,6β-tetraol (11)。以紅外線、質譜儀和核磁共振技術鑑定得到化合物1–11的結構,化合物1和5更進一步利用單晶X光繞射方法,解析出化合物的絕對立體構形。
用7-acetylsinumaximol B (2) 作化合物活性分析,發現對人類胃癌細胞NCI-N87具有濃度依賴性的抗增生作用,會引發人類胃癌細胞NCI-N87的凋亡作用。分子機制為 cytochrome c 從粒線體釋放後,會增加促凋亡蛋白(Bax和Bad)和減少抗凋亡蛋白(Bcl-2、Bcl-xl和Mcl-1)的蛋白質表現量,經由粒線體相關的凋亡路徑,造成細胞凋亡;引發內質網壓力反應,活化PERK/eIF2α/ATF4/CHOP凋亡路徑;造成人類胃癌細胞NCI-N87的自體吞噬,增加Atg3、Atg5、Atg7、Atg12、LC3-I和LC3-II等自體吞噬相關蛋白質的表現量。由本研究結果表示,化合物2有潛力可研發成治療人類胃癌有效的抗癌藥物。
Dihydroaustrasulfone alcohol (12)對人類腎臟癌細胞786-O的侵入和移動,具有濃度依賴性的抑制作用。主要分子機制是化合物12會抑制FAK/P13K/Akt/mTOR和 MAPKs(JNK/p38MAPK/ERK)訊息路徑,減少MMP-2、MMP-9和uPA的蛋白質表現量,增加TIMP-1和TIMP2的蛋白質表現量,防止人類腎臟癌細胞786-O的侵入和移動,表示化合物12有潛力可研發成治療人類腎臟細胞癌轉移的抗癌藥物。
Abstract
Cultured soft coral Sinularia sandensis has led to the isolation of elenven natural compounds, including two new cembranoids, 4-carbomethoxyl-10-epigyrosanoldie E (1) and 7-acetylsinumaximol B (2); four known cembranoids, sinumaximol B (3), sinulacembranolide A (4), pukalide (5) and 10-epigyrosanolide E (6); two known furanosesquiterpene compounds, methyl (1′E, 5′E)-5-(2′,6′-dimethylocta-1′,5′,7′-trienyl) furan-3-carboxylate (7) and (1′E,5′E)-5-(2′,6′-dimethylocta-1′,5′,7′-trienyl)furan-3- carboxylic acid (8); three known steroids, 24-methylenecholestane-3β,5α,6β-triol (9), 11α-acetoxy-24-methylenecholesta-3β,5α,6β-triol (10) and 11α-acetoxy-24- methylenecholesta-1α,3β,5α,6β-tetraol (11). The structures of compounds 1–11 were elucidated by means of IR, MS and NMR techniques, and the absolute configurations of 1 and 5 were further confirmed by single-crystal X-ray diffraction analysis.
7-Acetylsinumaximol B (2) exerted a concentration-dependent anti-proliferative effect on human gastric cancer cells NCI-N87. Activation of mitochondria-related apoptosis was associated with the release of cytochrome c from mitochondria, activation of pro-apoptotic proteins (Bax and Bad) and inhibition of anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1). Compound 2 triggered endoplasmic reticulum stress, leading to activation of the PERK/elF2α/ATF4/CHOP signal pathway. Compound 2 initiated autophagic apoptosis and induced the expression of autophagy-related proteins (Atg3, Atg5, Atg7, Atg12, LC3-I and LC3-II). Our results suggested that compound 2 has the potential to be developed as a useful anti-cancer drug for the treatment of human gastric cancer.
Dihydroaustrasulfone alcohol (12) provided a concentration-dependent inhibitory effect on the invasion and migration of human renal cancer cells. The expressions of MMP-2、MMP-9 and uPA were decreased and TIMP-1 and TIMP-2 were increased. Compound 12 suppressed FAK/PI3K/Akt/mTOR and MAPKs (JNK/p38MAPK/ERK) signal pathway. We concluded that compound 12 has anti-invasion and anti-migration activity of human renal cancer cells 780-O and might be applied to clinical treatment for metastasis of human renal cell carcinoma.
目次 Table of Contents
目 錄
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vii
圖次 ix
表次 xiii
第一章、前言 1
第一節、緒論 1
第二節、養殖型珊瑚所含天然物之文獻探討 10
第三節、養殖型珊瑚專利 26
第二章、生物材料及萃取與分離方法 27
第一節、生物材料的採集與分類 27
第二節、生物樣品的萃取與分離 29
第三章、實驗儀器和藥品試劑 31
第一節、實驗儀器 31
第二節、材料及藥品試劑 32
第四章、化學結構解析 35
第一節、沙島指形軟珊瑚所含化合物之結構解析 35
第五章、化合物抗癌活性分析 126
第一節、實驗方法 128
第二節、實驗結果 132
第六章 討論 146
第一節、結構解析 146
第二節、細胞凋亡的訊息路徑 149
第三節、FAK/PI3K/Akt/mTOR訊息路徑 151
第四節、MAPKs(JNK/p38MAPK/ERK)訊息路徑 152
第五節、結論 153
參考文獻 154
附錄一 167
附錄二 182
參考文獻 References
參考文獻
1. Sitarz, R.; Skierucha, M.; Mielko, J.; Offerhaus, G. J.-A.; Maciejewski, R.; Polkowski, W.-P. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 2018, 10, 239–248.
2. Orditura, M.; Galizia, G.; Sforza, V.; Gambardella, V.; Fabozzi, A.; Laterza, M.-M.; Andreozzi, F.; Ventriglia, J.; Savastano, B.; Mabilia, A.; Lieto, E.; Ciardiello, F.; Vita, F.-D. Treatment of gastric cancer. World J Gastroenterol 2014, 20(7), 1635–1649.
3. He, B.; Lu, N.; Zhou, Z. Cellular and nuclear degradation during apoptosis. Curr Opin Cell Biol 2009, 21(6), 900–912.
4. Vaux, D.-L.; Korsmeyer, S.-J. Cell death in development. Cell 1999, 96, 245–254.
5. Zacks, D.-N.; Zheng, Q.-D.; Han, Y.; Bakhru, R.; Miller, J.-W. Fac-mediated apoptosis and its relation to intrinsic pathway activation in an experimental model of retinal detachment. Retinal Cell Biology 2004, 45, 4563–4569.
6. Lavrik, I.; Golks, A.; Krammer, P.-K. Death receptor signaling. J Cell Sci 2005, 118, 265–267.
7. Luo, X.; Budihardjo, I.; Zou, H.; Slaughter, C.; Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998, 94, 481–490.
8. Hague, A.; Paraskeva, C. Apoptosis and disease: a matter of cell fate. Nat Cell Deat Diff 2004, 11(12), 1366–1372.
9. Green, D.-R.; Reed, J.-C. Mitochondria and apoptosis. Science 1998, 281, 1309–1312.
10. Youle, R.-J.; Strasser, A. The Bcl-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Bio 2008, 9, 47–59.
11. Chipuk, J.-E.; Green, D.-R. How do Bcl-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 2008, 18, 157–164.
12. Nicholson, D.-W.; Thornberry, N.-A. Apoptosis. Life and death decisions. Science 2003, 299(5604), 214–215.
13. Amarante-Mendes, G.-P.; Naekyung, K.-C.; Liu, L. Bcr-Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockage of mitochondrial release of cytochrome c and activation of caspase-3. Blood 1998, 91(5), 1700–1705.
14. Otsuka, T.; Chang, B.; Wada, A.; Okazaki, M. Molecular epidemiology and serogroup 6 capsular gene evolution of pneumococcal carriage in a Japanese birth cohort study. J Med Microbiol 2013, 62, 1868–1875.
15. Denicourt, C.; Dowdy, S.-F. Targeting apoptotic pathways in cancer cells. Science 2004, 305(5689), 1411–1413.
16. Hengartner, M.-O. The biochemistry of apoptosis. Nature 2000,407, 770–776
17. McBride, H.-M; Neuspiel, M.; Wasiak, S. Mitochondria: more than just a powerhouse. Curr Biol 2006, 16, 551–560.
18. Affar, E.-B.; Germain, M.; Winstall, E.; Vodenieharov, M.; Shah, R.-G.; Salvesen, G.-S.; Poirier, G.-G. Caspase-3-mediated processing of poly(ADP-ribose) glycohydrolase during apoptosis. J Biol Chem 2001, 276, 2935–2942.
19. Hosoi, R.; Ozawa, K. Endoplasmic reticulum stress in disease: mechanisms and therapeutic opportunities. Clin Sci 2009, 118(1), 19–29.
20. Rabinowitz, J.-D.; White, E. Autophagy and metabolism. Science 2010, 330(6009), 1344–1348.
21. Edinger, A.-L.; Thompson C.-B. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 2004, 16(6), 663–669.
22. Thorbum, A. Apoptosis and autophagy regulatory connections between two supposedly different processes. Apoptosis 2008, 13, 1–9.
23. Comperat, E.; Camparo, P. Histological classification of malignant renal tumors at a time of major diagnostic and therapeutic changes. Diagn Interv Imaging 2012, 93(4), 221–231.
24. Cohen, H.-T.; McGovem, F.-J. Renal-cell carcinoma. NEJM 2005, 353(23), 2477–2490.
25. Duensing, S.; Hohenfellner, M. Adjuvant therapy for renal-cell carcinoma: settled for now. Lancet 2016, 387(10032), 1973–1974.
26. Chen, S.; Liu, W.; Wang, K.; Fan, Y.; Chen, J.; Wang, X.; He, D.; Zeng, J.; Li, L. Tetrandrine inhibits migration and invastion of human renal cell carcinoma by regulating Akt/NF-κB/MMP-9 signaling PloS One 2017, 12(3): e0173725.
27. Neoh, C.-A.; Wu, W.-T.; Dai, G.-F.; Su, J.-H.; Liu, C.-I.; Su, T.-R. Flaccidoxide-13-acetate extracted from the soft coral Cladiella kashmani reduces human bladder cancer cell migration and invasion of the FAK/PI3K/Akt/mTOR signaling pathway. Molecules 2018, 23(1), 58.
28. Chang, L.; Karin, M. Mammalian kinase signaling cascades. Nature 2001, 410, 37–40.
29. Sebolt-Leopold, J.-S. Development of anticancer drugs targeting the MAP kinase pathway. Oncogene 2000, 10, 6594–6599.
30. Dias, D.-A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2,303-336.
31. Carter, G.-T. Natural products and Pharma 2011: Strategic changes spur new opportunities. Nat Prod Rep 2011, 28, 1783–1789.
32. Marins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 2014, 12(2), 1066–1101.
33. Sung, P.-J.; Lin, M.-R.; Su, Y.-D.; Chiang, M.Y.; Hu, W.-P.; Su, J.-H.; Cheng, M.-C.; Hwang, T.-L.; Sheu, J.-H. New briaranes from the octocoral Briareum excavatum (Briareidae) and Junceella fragilis (Ellisellidae). Tetrahedron 2008, 64, 2596–2604.
34. Sung, P.-J.; Lin, M.-R.; Hwang, T.-L.; Fan, T.-Y.; Su, W.-C.; Ho, C.-C.; Fang, L.-S.; Wang, W.-H. Briaexcavatins M–P, four new briarane-related diterpenoids from cultured octocoral Briareum excavatum (Briareidae). Chem Pharm Bull 2008, 56, 930–935.
35. Hwang, T.-L.; Lin, M.-R.; Tsai, W.-T.; Yeh, H.-C.; Hu, W.-P.; Sheu, J.-H.; Sung, P.-J. New polyoxygenated briaranes from octocorals Briareum excavatum and Ellisella robusta. Bull Chem Soc Jpn 2008, 81, 1638–1646.
36. Sung, P.-J.; Lin, M.-R.; Chiang, M.Y. The structure and absolute stereochemistry of briaexcavatin U, a new chlorinated briarane from a cultured octocoral Briareum excavatum. Chem Lett 2009, 38, 154–155.
37. Sung, P.-J.; Lin, M.-R.; Chiang, M.Y.; Hwang, T.-L. Briaexcavatins V–Z, discovery of new briaranes from a cultured octocoral Briareum excavatum. Bull Chem Soc Jpn 2009, 82, 987–996.
38. Sung, P.-J.; Chen, B.-Y.; Lin, M.-R.; Hwang, T.-L.; Wang, W.-H.; Sheu, J.-H.; Wu, Y.-C. Excavatoids E and F, discovery of two new briaranes from the cultured octocoral Briareum excavatum. Mar Drugs 2009, 7, 472–482.
39. Sung, P.-J.; Chen, B.-Y.; Chiang, M.Y.; Hou, C.-H.; Su, Y.-D.; Hwang, T.-L.; Chen, Y.-H.; Chen, J.-J. Excavatoids G–K, new 8, 17-epoxybriarane from the cultured octocoral Briareum excavatum (Briareidae). Bull Chem Soc Jpn 2010, 83, 539–545.
40. Su, J.-H.; Chen, B.-Y.; Hwang, T.-L.; Chen, Y.-H.; Huang, I.-C.; Lin, M.-R.; Chen, J.-J.; Fang, L.-S.; Wang, W.-H.; Li, J.-J.; Sheu, J.-H.; Sung, P.-J. Excavatoids L-N, new 12-hydroxy-briaranes from the cultured octocoral Briareum excavatum (Briareidae). Chem Pharm Bull 2010, 58, 662–665.
41. Sung, P.-J.; Li, G.-Y.; Su, Y.-D.; Lin, M.-R.; Chang, Y.-C.; Kung, T.-H.; Lin, C.-S.; Chen, Y.-H.; Su, J.-H.; Lu, M.-C.; Kuo, J.; Weng, C.-F.; Hwang, T.-L. Excavatoids O and P, new 12-hydroxdybriaranes from the octocoral Briareum excavatum. Mar Drugs 2010, 8, 2639–2646.
42. Sheu, J.-H.; Sung, P.-J.; Cheng, M.-C.; Liu, H.-Y.; Fang, L.-S.; Duh, C.-Y.; Chiang, M.-Y. Novel cytotoxic diterpenes, excavatolides A-E, isolated from the Formosan gorgonian Briareum excavatum. J Nat Prod 1998, 61(5), 602–608.
43. Wei, W.-C.; Lin, S.-Y.; Chen, Y.-J.; Wen, C.-C.; Huang, C.-Y.; Palanisamy, A.; Yang, N.-S.; Sheu, J.-H. Topical application of marine briarane-type diterpenes effectively inhibits 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and dermatitis in murine skin. J Biomed Sci 2011, 18, 94.
44. Lin, Y.-Y.; Lin, S.-C.; Feng, C.-W.; Chen, P.-C.; Su, Y.-D.; Li, C.-M.; Yang, S.-N.; Jean, Y.-H.; Sung, P.-J.; Duh, C.-Y.; Wen, Z.-H. Anti-inflammatory and analgesic effects of the marine-derived compound excavatolide B isolated from the culture-type Formosan gorgonian Briareum excavatum. Mar Drugs 2015, 13, 2559–2579.
45. Lin, Y.-Y.; Jean, Y.-H.; Lee, H.-P.; Lin, S.-C.; Pan, C.-Y.; Chen, W.-F.; Wu, S.-F.; Su, J.-H.; Tsui, K.-H.; Sheu, J.-H.; Sung, P.-J.; Wen, Z.-H. Excavatolide B attenuates rheumatoid arthritis through the inhibition of osteoclastogenesis. Mar Drugs 2017, 15, 9.
46. Sung, P.-J.; Lin, M.-R.; Chiang, M.Y.; Syu, S.-M.; Fang, L.-S.; Wang, W.-H.; Sheu, J.-H. Briarenolide D, a new hydroperoxybriarane diterpenoid from a cultured octocoral Briareum sp. Chem Lett 2010, 39, 1030–1032.
47. Chen, B.-W.; Wu, Y.-C.; Chiang, M.-Y.; Su, J.-H.; Wang, W.-H.; Fan, T.-Y.; Sheu, J.-H. Eunicellin-based diterpenoids from the cultured soft coral Klyxum simplex. Tetrahedron 2009, 65(34), 7016–7022.
48. Chen, B.-W.; Chao, C.-H.; Su, J.-H.; Wen, Z.-H., Sung, P.-J.; Sheu, J.-H. Anti-inflammatory eunicellin-based diterpenoids from the cultured soft coral Klyxum simplex. Org Biomol Chem 2010, 8(10), 2363–2366.
49. Chen, B.-W.; Chao, C.-H.; Su, J.-H.; Tsai, C.-W.; Wang, W.-H.; Wen, Z.-H.; Sheu, J.-H. Klysimplexins I–T, eunicellin-based diterpenoids from the cultured soft coral Klyxum simplex. Org Biomol Chem 2011, 9(3), 834–844.
50. Chen, B.-W.; Huang, C.-Y.; Wen, Z.-H.; Su, J.-H.; Wang, W.-H.; Sung, P.-J.; Sheu, J.-H. Klysimplexins U-X, eunicellin-based diterpenoids from the cultured soft coral Klyxum simplex. Bull Chem Soc Jpn 2011, 84(11), 1237–1242.
51. Lee, N.-L.; Su, J.-H. Tetrahydrofuran cembranoids from the cultured soft coral Lobophytum crassum. Mar Drugs 2011, 9(12), 2526–2536.
52. Hsiao, T.-H.; Sung, C.-S.; Lan, Y.-H.; Wang, Y.-C.; Lu, M.-C.; Wen, Z.-H.; Sung, P.-J. New anti-inflammatory cembranes from the cultured soft coral Nephthea columnaris. Mar Drugs 2015, 13(6), 3443–3453.
53. Hsiao, T.-H.; Cheng, C.-H.; Wu, T.-Y.; Lu, M.-C.; Chen, W.-F.; Wen, Z.-H.; Sung, P.-J. New cembranoid diterpenes from the cultured octocoral Nephthea columnaris. Molecules 2015, 20(7), 13205–13215.
54. Su, C.-C.; Su, J.-H.; Lin, J.-J.; Chen, C.-C.; Hwang, W.-I.; Huang, H.-H.; Wu, Y.-J. An investigation into the cytotoxic effects of 13-acetoxysarcocrassolide from the soft coral Sarcophyton crassocaule on bladder cancer cells. Mar Drugs 2011, 9(12), 2622–2642.
55. Huang, C.-Y.; Sung, P.-J.; Uvarani, C.; Su, J.-H.; Lu, M.-C.; Hwang, T.-L.; Sheu, J.-H. Glaucumolides A and B, biscembranoids with new structural type from a cultured soft coral Sarcophyton glaucum. Sci Rep 2015, 5, 15624.
56. Su, J.-H.; Lu, Y.; Lin, W.-Y.; Wang, W.-H.; Sung, P.-J.; Sheu, J.-H. A cembranoid, trocheliophorol, from the cultured soft coral Sarcophyton trocheliophorum. Chem Lett 2010, 39, 172–173.
57. Huang, C.-Y.; Liaw, C.-C.; Chen, B.-W.; Chen, P.-C.; Su, J.-H.; Sung, P.-J.; Dai, C.-F.; Chiang, M.-Y.; Sheu, J.-H. Withanolide-based steroids from the cultured soft coral Sinularia brassica. J Nat Prod 2013, 76, 1902–1908.
58. Huang, C.-Y.; Su, J.-H.; Liaw, C.-C.; Sung, P.-J.; Chiang, P.-L.; Hwang, T.-L.; Dai, C.-F.; Sheu, J.-H. Bioactive steroids with methyl ester group in the side chain from a reef soft coral Sinularia brassica cultured in a Tank. Mar Drugs 2017, 15, 280.
59. Huang, C.-Y.; Ahmed, A.-F.; Su, J.-H.; Sung, P.-J.; Hwang, T.-L.; Chiang, P.-L.; Dai, C.-F.; Liaw, C.-C.; Sheu, J.-H. Bioactive new withanolides from the cultured soft coral Sinularia brassica. Bioorg Med Chem Lett 2017, 27, 3267–3271.
60. Lin, Y.-F.; Kuo, C.-Y.; Wen, Z.-H.; Lin, Y.-Y.; Wang, W.-H.; Su, J.-H.; Sheu, J.-H.; Sung, P.-J. Flexibilisquinone, a new anti-inflammatory quinone from the cultured soft coral Sinularia flexibilis. Molecules 2013, 18, 8160–8167.
61. Su, J.-H.; Lin, Y.-F.; Lu, Y.; Huang, C.-Y.; Wang, W.-H.; Fang, T.-Y.; Sheu, J.-H. Oxygenated cembranoids from the cultured and wild-type soft corals Sinularia flexibilis. Chem Pharm Bull 2009, 57, 1189–1192.
62. Lin, J.-J.; Su, J.-H.; Tsai, C.-C.; Chen, Y.-J.; Liao, M.-H.; Wu, Y.-J. 11-epi-Sinulariolide acetate reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation of ERK1/2, p38MAPK and FAK/PI3K/Akt/mTOR signaling pathways. Mar Drugs 2014, 12, 4783–4798.
63. Lin, J.-J.; Wang, R.-Y.; Chen, J.-C.; Chiu, C.-C.; Liao, M.-H.; Wu, Y.-J. Cytotoxicity of 11-epi-sinulariolide acetate isolated from cultured soft corals on HA22T cells through the endoplasmic reticulum stress pathway and mitochondrial dysfunction. Int J Mol Sci 2016, 17(11), 1787.
64. Lin, Y,-Y.; Jean, Y.-H.; Lee, H.-P.; Chen, W.-F.; Sun, Y.-M.; Su, J.-H.; Lu, Y.; Huang, S.-Y.; Hung, H,-C.; Sung, P.-J.; Sheu, J.-H.; Wen, Z.-H. A soft coral-derived compound, 11-epi-sinulariolide acetate suppresses inflammatory response and bone destruction in adjuvant-induced arthritis. PloS One 2013, 13; 8(5): e62926.
65. Tsai, T.-C.; Chen, H.-Y.; Sheu, J.-H.; Chiang, M.-Y.; Wen, Z.-H.; Dai, C.-F.; Su, J.-H. Structural elucidation and structure-anti-inflammatory activity relationships of cembranoids from cultured soft corals Sinularia sandensis and Sinularia flexibilis. J Agric Food Chem 2015, 63, 7211–7218.
66. Liu, C.-I; Wang, R.-Y.; Lin, J.-J.; Su, J.-H.; Chiu, C.-C.; Chen, J.-C.; Chen, J.-Y.; Wu, Y.-J. Proteomic profiling of the 11-dehydrosinulariolide-treated oral carcinoma cells Ca9-22: Effects on the cell apoptosis through mitochondrial- related and ER stress pathway. J Proteomics 2012, 75, 5578–5589.
67. Li, H.-H.; Su, J.-H.; Chiu, C.-C.; Lin, J.-J.; Yang, Z.-Y.; Hwang, W.-I.; Chen, Y.-K.; Lo, Y.-H.; Wu, Y.-J. Proteomic investigation of the sinulariolide-treated melanoma cells A375: effects on the cell apoptosis through mitochondrial-related pathway and activation of caspase cascade. Mar Drugs 2013, 11, 2625–2642.
68. Neoh, C.-A.; Wang, R.-Y.; Din, Z.-H.; Su, J.-H.; Chen, Y.-K.; Tsai, F.-J.; Weng, S.-H.; Wu, Y.-J. Induction of apoptosis by sinulariolide from soft coral through mitochondrial-related and p38MAPK pathways on human bladder carcinoma cells. Mar Drugs 2012, 10, 2893–2911.
69. Chen, Y.-J.; Su, J.-H.; Tsao, C.-Y.; Hung, C.-T.; Chao, H.-H.; Lin, J.-J.; Liao, M.-H.; Yang, Z.-Y.; Huang, H.H.; Tsai, F.-J.; Weng, S.-H.; Wu, Y.-J. Sinulariolide induced hepatocellular carcinoma apoptosis through activation of mitochondrial -related apoptotic and PERK/eIF2α/ATF4/CHOP pathway. Molecules 2013, 18, 10146–10161.
70. Cheng, T.-C.; Din, Z.-H.; Su, J.-H.; Wu, Y.-J.; Liu, C.-I. Sinulariolide suppresses cell migration and invasion by inhibiting matrix metalloproteinase-2/-9 and urokinase through the PI3K/AKT/mTOR signaling pathway in human bladder cancer cells. Mar Drugs 2017, 15, 238.
71. Wu, Y.-J.; Neoh, C.-A.; Tsao, C.-Y.; Su, J.-H.; Li, H.-H. Sinulariolide suppresses human hepatocellular carcinoma cell migration and invasion by inhibiting matrix metalloproteinase-2/-9 through MAPKs and PI3K/Akt signaling pathways. Int J Mol Sci 2015, 16, 16469–16482.
72. Huang, S.-Y.; Chen, N.-F.; Chen, W.-F.; Hung, H.-C.; Lee, H.-P.; Lin, Y.-Y.; Wang, H.-M.; Sung, P.-J.; Sheu, J.-H.; Wen, Z.-H. Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. Mar Drugs 2012, 10, 1899–1919.
73. Su, T.-R.; Lin, J.-J.; Chiu, C.-C.; Chen, J. Y.-F.; Su, J.-H.; Cheng, Z.-J.; Hwang, W.-I.; Huang, H.-H.; Wu, Y.-J. Proteomic investigation of anti-tumor activities exerted by sinularin against A2058 melanoma cells. Electrophoresis 2012, 3, 1139–1152.
74. Wu, Y.-J.; Wong, B.-S.; Yea, S.-H.; Lu, C.-I.; Weng, S.-H. Sinularin induces apoptosis through mitochondria dysfunction and inactivation of the pI3K/Akt/ mTOR pathway in gastric carcinoma cells. Mar Drugs 2016, 14, 142.
75. Lin, H.-F.; Su, H.-J.; Lee, N.-L.; Su, J.-H. Cembranoids from the cultured soft coral Sinularia gibberosa. Nat Prod Commun 2013, 8, 1363–1364.
76. Tsai, T.-C.; Wu, Y.-J.; Su, J.-H.; Lin, W.-T. A new spatane diterpenoid from the cultured soft coral Sinularia leptoclados. Mar Drugs 2013, 11,114–123.
77. Tseng, S.-P.; Hung, W.-C.; Huang, C.-Y.; Huang, C.-Y.; Lin, Y.-S.; Chan, M.-Y.; Lu, P.-L.; Lin, L.; Sheu, J.-H. 5-Episinuleptolide decreases the expression of the extracellular matrix in early biofilm formation of multi-drug resistant Acinetobacter baumannii. Mar Drugs 2016, 14(8), 143.
78. Liang, C.-H.; Wang, G.-H.; Chou, T.-H.; Wang, S.-H.; Lin, R.-J.; Chan, L.-P.; So, E.-C.; Sheu, J.-H. 5-Episinuleptolide induces cell cycle arrest and apoptosis through tumor necrosis factor/mitochoncria-demidated casppase signaling pathway in human skin cancer cells. Biochim Biophys Acta 2012, 1820(7), 1149–1157.
79. Chang, Y.-T.; Huang, C.-Y.; Li, K.-T.; Li, R.-N.; Liaw, C.-C.; Wu, S.-H.; Liu, J.-R.; Sheu, J.-H.; Chang, H.-W. Sinuleptolide inhibits proliferation of oral cancer Ca9-22 cells involving apoptosis, oxidative stress, and DNA damage. Arch Oral Biol 2016, 66, 147–154.
80. Chen, W.-F.; Yin, C.-T.; Cheng, C.-H.; Lu, M.-C.; Fang, L.-S.; Wang, W.-H.; Wen, Z.-H.; Chen, J.-J.; Wu, Y.-C.; Sung, P.-J. Norcembranoidal diterpenes from the cultured-type octocoral Sinularia numerosa. Int J Mol Sci 2015, 16, 3298– 3306.
81. Taglialatela-Scafati, O.; Deo-Jangra, U.; Campbell, M.; Roberge, M.; Andersen, R.-J. Diterpenoids from cultured Erythropodium caribaeorum. Org Lett 2002, 4, 4085–4088.
82. Andrianasolo, E.-H.; Haramaty, L.; White, E.; Lutz, R.; Falkowski, P. Mode of action of diterpene and characterization of related metabolites from the soft coral Xenia elongata. Mar Drugs 2014, 12, 1102–1115.
83. Thao, N.-P.; Nam, N.-H.; Cuong, N.-X.; Quang, T.-H.; Tung, P.-T.; Tai, B.-H.; Luyen, B.-T.-T.; Chae, D.; Kim, S.; Koj, Y.-S.; Kiem, P.-V.; Minh, C.-V.; Kim, Y.-H. Diterpenoids from the soft coral Sinularia maxima and their inhibitory effects on lipopolysaccharide-stimulated production of pro-inflammatory cytokines in bone marrow-derived dendritic cells. Chem Pharm Bull 2012, 60(12), 1581–1589.
84. Lin, W.-J.; Wu, T.-Y.; Su, T.-R.; Wen, Z.-H.; Chen, J.-J.; Fang, L.-S.; Wu, Y.-C.; Sung, P.-J.Terpenoids from the octocoral Sinularia gaweli. Int J Mol Sci 2015, 16, 19508–19517.
85. Gutiérrez, M.; Capson, T.-L.; Guzmán, H.-M.; González, J.; Ortega-Barria, E.; Quinoá, E.; Riguera, R. Leptolide, a new furanocembranolide diterpene from Leptogorgia alba. J Nat Prod 2005, 68, 614–616.
86. Cheng, S.-Y.; Chuang, C.-T.; Wen, Z.-H.; Wang, S.-K.; Chiou, S.-F.; Hsu, C.-H.; Dai, C.-F., Duh, C.-Y. Bioactive norditerpenoids from the soft coral Sinularia gyrosa. Bioorg Med Chem 2010, 18, 3379–3386.
87. Kwon,M.-S.; Sim,S.-H.; Chung,Y.-K.; Lee,E. Synthetic studies on soft coral norcembranolides: total synthesis of (+)-10-epigyrosanolide E. Tetrahedron 2011, 67, 10179–10185.
88. Bowden, B.-F.; Coll, J.-C.; Silva, E.-D.; Costa, M.-S.-L.; Djura, P.-J. Mahendran, M.; Tapiolas, D.-M. Novel furanosesquiterpenes from several sinularian soft corals. Aust J Chem 1983, 36, 371–376.
89. Shaaban, M.; Shaaban, K.-A.; Ghani, M.-A. Hurgadacin: a new steroid from Sinularia polydactyla. Steroids 2013, 78(9), 866–873.
90. Lu,Q.; Faulkner,D.-J. Two 11α-acetoxysterols from the Palauan Soft Coral Lobophytum cf. pauciflorum. Nat Prod Lett 1997,10,231–237.
91. Kobayashi,M.; Rao, K.-M.-C.-A.; Krishna, M.-M.; Anuaneyulu,V. Marine sterols.30. Isolation of 24-methylene-cholestane-1-alpha,3-beta,5-alpha,6-beta,11- alpha-pentol and its 11-monoacetate from soft coral Sinularia dissecta. J Chem Res Synop 1994,5,180–181.
92. Wen, Z.-H.; Chao, C.-H.; Wu, M.-H.; Sheu, J.-H. A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. Eur J Med Chem 2010, 45(12), 5998–6004.
93. Chen, S.-C.; Chien, Y.-C.; Pan, C.-H.; Sheu, J.-H.; Chen, C.-Y.; Wu, C.-H. Inhibitory effect of dihydroaustrasulfone alcohol on the migration of human non-small cell lung carcinoma A549 cells and the antitumor effect on a Lewis lung carcinoma-bearing tumor model in C57B/6J mice. Mar Drugs 2014, 12, 196–213.
94. Rodriguez, A.-D.; Li, Y.; Dhasmana, H.; Barnes, C. New marine cembrane diterpenoids isolated from the Caribbena Gorgonian Eunicea mammosa. J Nat Prod 1993, 56, 1101–1113.
95. Zhang, L.; Wabg, H.; Cong, Z.; Xy, J.; Zhu, J.; Ji, X.; Ding, K. Wogonoside induces autophagy-related apoptosis in human glioblastoma cells. Oncol Rep 2014, 32(3). 1179–1187.
96. Shankar, S.; Srivastava, R.-K. Bax and bak genes are essential for maximum apoptotic response by curcumin, a polyphenolic compound and cancer chemo- preventive agent derived from turmeric, curcuma longa. Carcinogenesis 2007, 28, 1277–1286.
97. Wang, H.-L.; Yeh, T.-H.; Chou, A.-H.; Kuo, Y.-L.; Luo, L.-J.; He, C.-Y.; Huang, P.-C.; Li, A.-H. Polyglutamine-expanded ataxin-7 activates mitochondrial apoptotic pathway of cerebellar neurons by upregulating Bax and downregulating Bcl-x(L). Cell Signal 2006, 18, 541–552.
98. Adams, J.-M.; Cory, S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 2007, 19, 488–496.
99. Shimizu, H.; Banno, Y.; Sumi, N.; Naganawa, T.; Kitajima, Y.; Nozawa, Y. Activation of p38 mitogen-activated protein kinase and caspases in UVB-induced apoptosis of human keratinocyte hacat cells. J Investig Dermatol 1999, 112, 769–774.
100. Toth, A.; Nickson, P.; Mandl, A.; Bannister, M.-L.; Toth, K.; Erhardt, P. Endoplasmic reticulum stress as a novel therapeutic target in heart diseases. Cardiovasc Hematol Disord Drug Targets 2007, 7 , 205–218.
101. Doyle, K.-M.; Kennedy, D.; Gorman, A.-M.; Gupta, S.; Healy, S.-J.; Samali, A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med 2011, 15 , 2025–2039.
102. Matsumoto, H.; Miyazaki, S.; Matsuyama, S.; Takeda, M.; Kawano, M.; Nakagawa, H.; Nishimura, K.; Matsuo, S. Selection of autophagy or apoptosis in cells exposed to ER-stress depends on ATF 4 expression pattern with or without CHOP expression. Biol Open 2013, 2, 1084–1090.
103. Gregor, M.-F.; Hotamisligil, G.-S. Thematic review series: Adipocyte biology. Adipocyte stress: The endoplasmic reticulum and metabolic disease. J Lipid Res 2007, 48, 1905–1914.
104. Xu, C.; Bailly-Maitre, B.; Reed, J.-C. Endoplasmic reticulum stress: Cell life and death decisions. J Clin Investig 2005, 115, 2656–2664.
105. B’Chir, W.; Maurin, A.-C.; Carraro, V.; Averous, J.; Jousse, C.; Muranishi, Y.; Parry, L.; Stepien, G.; Fafournoux, P.; Bruhat, A. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res 2013, 41, 7683–7699.
106. Tsai, T.-C.; Lai, K.-H.; Su, J.-H.; Wu, Y.-J.; Sheu, J.-H. 7-Acetylsinumaximol B induces apoptosis and autophagy in human gastric carcinoma cells through PERK/eIF2α/ATF4/CHOP signaling pathway. Mar Drugs 2018, 16, 104.
107. Rabinowitz, J.-D.; White, E. Autophagy and metabolism. Science 2010, 330, 1344–1348.
108. Luo, S.; Rubinsztein, D.-C. Bcl2l11/bim: A novel molecular link between autophagy and apoptosis. Autophagy 2013, 9, 104–105.
109. Wong, C.-H.; Iskandar, K.-B.; Yadav, S.-K.; Hirpara, J.-L.; Loh, T.; Pervaiz, S. Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PloS One 2010, 5, e9996
110. Radoshevich, L.; Murrow, L.; Chen, N.; Fernandez, E.; Roy, S.; Fung, C.; Debnath, J. Atg12 conjugation to Atg3 regulates mitochondrial homeostasis and cell death. Cell 2010, 142, 590–600.
111. Hanada, T.; Noda, N.-N.; Satomi, Y.; Ichimura, Y.; Fujioka, Y.; Takao, T.; Inagaki, F.; Ohsumi, Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 2007, 282, 37298–37302.
112. Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. Lc3, a mammalian homologue of yeast apg8p, is localized in autophagosome membranes after processing. EMBO J 2000, 19, 5720–5728.
113. Tanida, I.; Ueno, T.; Kominami, E. Lc3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 2004, 36, 2503–2518.
114. Levine, B.; Yuan, J. Autophagy in cell death: An innocent convict ? J Clin Investig 2005, 115, 2679–2688.
115. Rubinstein, A.-D.; Kimchi, A. Life in the balance - A mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 2012, 125, 5259–5268.
116. Pyo, J.-O.; Jang, M.-H.; Kwon, Y.-K.; Lee, H.-J.; Jun, J.-I.; Woo, H.-N.; Cho, D.-H.; Choi, B.; Lee, H.; Kim, J.-H. Essential roles of Atg5 and fadd in autophagic cell death: Dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 2005, 280, 20722–20729.
117. Yousefi, S.; Perozzo, R.; Schmid, I.; Ziemiecki, A.; Schaffner, T.; Scapozza, L.; Brunner, T.; Simon, H.-U. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 2006, 8, 1124–1132.
118. Hainaut, P.; Plymoth, A. Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol 2013, 25(1) ,50-51.
119. Yilmaz, M.; Christofori, G.; Lehembre, F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 2007, 13(12) ,535–541.
120. Zhou, F.; Liu, D.; Ning, H.-F.; Yu, X.-C.; Guan, X.-R. The roles of p62/SQSTM1 on regulation of matrix metalloproteinase-9 gene expression in response to oxLDL in atherosclerosis. Biochem Biophys Res Commun 2016, 472(3), 451–458.
121. Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010, 141(1), 52–67.
122. Chang, X.; Xu, X.; Xue, X.; Ma, J.; Li, Z.; Deng, P. NDRG1 controls gastric cancer migration and invasion through regulating MMP-9. Pathol Oncol Res 2016, 22(4), 789–796.
123. Kou, B.; Liu, W.; He, W.; Zhang, Y.; Zheng, J.; Yan, Y. Tetrandrine suppresses metastatic phenotype of prostate cancer cells by regulating Akt/mTOR/MMP-9 signaling pathway. Oncol Rep 2016, 35(5), 2880–2886.
124. Fan, D.; Wang, Y.; Qi, P.; Chen, Y.; Xu, P.; Yang, X. MicroRNA-183 functions as the tumor suppressor via inhibiting cellular invasion and metastasis by targeting MMP-9 in cervical cancer. Gynecol Oncol 2016, 141(1), 166–174.
125. Arii, S.; Mise, M.; Harada, T.; Furutani, M.; Ishigami, S.; Niwano, M.; Mizumoto, M.; Fukumoto, M.; Imamura, M. Overexpression of matrix metalloproteinase 9 gene in hepatocellular carcinoma with invasive potential. Hepatology 1996, 24, 316–322.
126. Wyrebska, A.; Gach, K.; Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Modranka, J.; Jakubowski, R.; Janecki, T.; Szymanski, J.; Janecka, A. Anticancer activity of new synthetic α-methylene-δ-lactones on two breast cancer cell lines. Basic Clin Pharmacol Toxicol 2013,121, 196–213.
127. Zhu, X.-L.; Wang, Y.-L.; Chen, J.-P.; Duan, L.-L.; Cong, P.-F.; Qu, Y.-C.; Li-Ling, J.; Zhang, M.-X. Alternol inhibits migration and invasion of human hepatocellular carcinoma cells by targeting epithelial-to-mesenchymal transition. Tumour Biol 2014, 35(2), 1627–1635.
128. Terada, T.; Okada, Y.; Nakanuma, Y. Expression of immunoreactive matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human normal livers and primary liver tumors. Hepatology 1996, 23, 1341–1344.
129. Zhou, H.; Huang, S. Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept Sci 2011, 12(1), 30–42.
130. Parsons, J.-T. Focal adhesion kinase: The first ten years. J. Cell Sci. 2003, 116, 1409–1416.
131. Canel, M.; Secades, P.; Garzon-Arango, M.; Allonca, E.; Suarez, C.; Serrels, A.; Frame, M.; Brunton, V.; Chiara, M.-D. Involvement of focal adhesion kinase in cellular invasion of head and neck squamous cell carcinomas via regulation of MMP-2 expression. Br J Cancer 2008, 98, 1274–1284.
132. Johnstone, R.-W.; Ruefli, A.-A.; Lowe, S.-W.; Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002, 108, 153–164.
133. Vivanco, I.; Sawyers, C.-L. The phosphatidylinositol 3-kinase Akt pathway in human cancer. Nat Rev Cancer 2002, 2, 489–501.
134. Osaki, M.; Oshimura, M.; Ito, H. PI3k-Akt pathway: Its functions and alterations in human cancer. Apoptosis 2004, 9, 667–676.
135. Gupta, A.-K.; Soto, D.-E.; Feldman, M.-D.; Goldsmith, J.-D.; Mick, R.; Hahn, S.-M.; Machtay, M.; Muschel, R.-J.; McKenna, W.-G. Signaling pathways in NSCLC as a predictor of outcome and response to therapy. Lung 2004, 182, 151–162.
136. Shih, Y.-W.; Chen, P.-S.; Wu, C.-H.; Jeng, F.-Y.; Wang, C.-J. α-Chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-κB in human lung adenocarcinoma A549 cells. J Agric Food Chem 2007, 55, 11035–11043.
137. Chen, S.; Chen, W.; Zhang, X.; Lin, S.; Chen, Z. Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-κB signal pathway. Int J oncol 2016, 48, 1391–1396.
138. Reddy, K.-B.; Nabha, S.-M.; Atanaskova, N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev 2003, 22, 395–403.
139. Kim, E.-K.; Choi, E.-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 2010, 1802, 396–405.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code