Responsive image
博碩士論文 etd-0715118-011503 詳細資訊
Title page for etd-0715118-011503
論文名稱
Title
FNDC5/Irisin在SH-SY5Y神經細胞neurogenesis之角色
Role of FNDC5/Irisin in neurogenesis of SH-SY5Y cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-13
繳交日期
Date of Submission
2018-08-15
關鍵字
Keywords
神經保護、神經元分化、Irisin、運動
neuroprotection, Irisin, exercise, neuronal differentiation
統計
Statistics
本論文已被瀏覽 5676 次,被下載 0
The thesis/dissertation has been browsed 5676 times, has been downloaded 0 times.
中文摘要
生活在高壓力工作的人們,缺乏足夠運動的生活方式經常引發多種代謝綜合症或者是心血管疾病。研究表明運動不僅可以增加免疫系統,減少民間疾病的發生,還可以幫助患有神經系統疾病的患者恢復體力的喪失。然而,運動對於神經保護或者是神經元分化的有益效果仍不清楚,Irisin是一種新的肌動蛋白,它已被證明是由骨骼肌分泌的纖連蛋白III型結構域的蛋白質5經由蛋白質水解酶切割而來的。研究表明,Irisin可以有效的誘導白色脂肪組織轉化成棕色脂肪組織並且改善第二型糖尿病。此外,Irisin也被作為神經細胞存活和發育的潛在調節劑。因此在這項研究中,我們調查了Irisin和Irisin-mutant重組蛋白在神經分化和神經元保護中的作用。根據晶體結構和生化數據的支持,Irisin可以藉由鹽橋區域和雙硫鍵形成二聚體,因此我們生產出IrisinWT以及將Irisin點突變形成IrisinR75E、IrisinC87A以及IrisinR75E/C87A去完成我們的目標,藉由增殖和遷移的試驗,表明IrisinWT以劑量方式刺激SH-SY5Y細胞的增殖和遷移,另外,IrisinWT也可以減少6-OHDA以及CoCl2所誘導的細胞死亡,在RT-PCR和Western blot的實驗中顯示出IrisinWT在視黃酸(RA)誘導的類神經元細胞中增加mRNA以及蛋白質水平。總之我們的研究結果表明,IrisinWT可以保護神經細胞免於神經毒素6-OHDA所誘導的細胞損傷,也可以對於CoCl2所誘導的細胞在缺氧狀態下具有保護作用。在另一方面,Irisin-突變蛋白只有部分或無法保護神經元細胞經由神經毒素6-OHDA以及CoCl2所誘導的細胞傷害。綜合上述,實驗結果顯示:Irisin二聚體形成對其生物功能是重要的,並且雙硫鍵對於Irisin形成二聚體是關鍵的。
Abstract
People who live in high-pressure work environment and lacking enough exercise of lifestyle frequently elicit several metabolic syndromes or cardiovascular diseases. Studies have shown that exercise not only enhance immune system and reduce the incidence of civil diseases, but also help patients with neurological disorders to regain lost physical abilities. However, how beneficial effects of exercise on neuroprotection or neuronal differentiation is still unclear. Irisin, a newly myokine protein, which has been shown to be secreted from transmembrane protein fibronectin type III domain containing 5 (FNDC5) of skeletal muscle. Studies have indicated that Irisin is efficient to induce converting differentiation of white adipose tissue into brown adipose tissue and improve type 2 diabetes. Moreover, Irisin is also shed as a potential regulator in neuronal survival and development. Thus, in this study, we investigated the role of IrisinWT and Irisin-mutnat recombinant proteins in neuronal differentiation and neuron protection. According to the crystal structure and biochemical results supported that IrisinWT can form a dimerization by salt bridge region and disulfide bond, we thus generated IrisinWT and point mutation of IrisinR75E, IrisinC87A and IrisinR75EC87A proteins to address this aim. By proliferation and migration assays, our results indicated that IrisinWT stimulate the cell proliferation and migration in SH-SY5Y cells in dose manner. In addition, IrisinWT reduced the cell death induced by 6-OHDA or CoCl2 in SH-SY5Y cells. Moreover, RT-PCR and Western blot results revealed that an elevation of mRNA and protein level of IrisinWT in Retinoic acid (RA)-induced neuron-like cells. In summary, our results suggested that IrisinWT protect neuron cells against neurotoxin 6-OHDA-induced cell damage and protect neuron cells against CoCl2-induced cell damage in a hypoxic environment. On the other hand, Irisin-mutant proteins were only partially or unable to protect neuronal cells from neurotoxin 6-OHDA-induced cell injury and protect neuronal cells from CoCl2-induced cell damage in a hypoxic environment. Taken together, the results implied that the dimerization of Irisin is important for its bio-function, and the formation of disulfide bonds is critical to the dimerization of Irisin.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
中文摘要 iii
英文摘要 iv
INDEX vi
Introduction 1
Specific aims 11
Materials and Methods 12
Results 19
Discussion 27
Figures and legends 31
Appendix 50
References 51
參考文獻 References
Anastasilakis, A.D., Koulaxis, D., Kefala, N., Polyzos, S.A., Upadhyay, J., Pagkalidou, E., Economou, F., Anastasilakis, C.D., and Mantzoros, C.S. (2017). Circulating irisin levels are lower in patients with either stable coronary artery disease (CAD) or myocardial infarction (MI) versus healthy controls, whereas follistatin and activin A levels are higher and can discriminate MI from CAD with similar to CK-MB accuracy. Metabolism: clinical and experimental 73, 1-8.
Asadi, Y., Gorjipour, F., Behrouzifar, S., and Vakili, A. (2018). Irisin Peptide Protects Brain Against Ischemic Injury Through Reducing Apoptosis and Enhancing BDNF in a Rodent Model of Stroke. Neurochemical research.
Ates, I., Arikan, M.F., Erdogan, K., Kaplan, M., Yuksel, M., Topcuoglu, C., Yilmaz, N., and Guler, S. (2017). Factors associated with increased irisin levels in the type 1 diabetes mellitus. Endocrine regulations 51, 1-7.
Avesani, C.M., Draibe, S.A., Kamimura, M.A., Dalboni, M.A., Colugnati, F.A., and Cuppari, L. (2004). Decreased resting energy expenditure in non-dialysed chronic kidney disease patients. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 19, 3091-3097.
Bostrom, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., Rasbach, K.A., Bostrom, E.A., Choi, J.H., Long, J.Z., et al. (2012). A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463-468.
Camilleri, A., and Vassallo, N. (2014). The centrality of mitochondria in the pathogenesis and treatment of Parkinson's disease. CNS neuroscience & therapeutics 20, 591-602.
Cherubini, A., Ruggiero, C., Polidori, M.C., and Mecocci, P. (2005). Potential markers of oxidative stress in stroke. Free radical biology & medicine 39, 841-852.
Choi, Y.K., Kim, M.K., Bae, K.H., Seo, H.A., Jeong, J.Y., Lee, W.K., Kim, J.G., Lee, I.K., and Park, K.G. (2013). Serum irisin levels in new-onset type 2 diabetes. Diabetes research and clinical practice 100, 96-101.
Colaianni, G., Cuscito, C., Mongelli, T., Oranger, A., Mori, G., Brunetti, G., Colucci, S., Cinti, S., and Grano, M. (2014). Irisin enhances osteoblast differentiation in vitro. International journal of endocrinology 2014, 902186.
Crujeiras, A.B., Zulet, M.A., Lopez-Legarrea, P., de la Iglesia, R., Pardo, M., Carreira, M.C., Martinez, J.A., and Casanueva, F.F. (2014). Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism: clinical and experimental 63, 520-531.
Fukui, H., and Moraes, C.T. (2008). The mitochondrial impairment, oxidative stress and neurodegeneration connection: reality or just an attractive hypothesis? Trends in neurosciences 31, 251-256.
Gelders, G., Baekelandt, V., and Van der Perren, A. (2018). Linking Neuroinflammation and Neurodegeneration in Parkinson's Disease. Journal of immunology research 2018, 4784268.
Gouveia, M.C., Vella, J.P., Cafeo, F.R., Affonso Fonseca, F.L., and Bacci, M.R. (2016). Association between irisin and major chronic diseases: a review. European review for medical and pharmacological sciences 20, 4072-4077.
Greenberg, M.E., Xu, B., Lu, B., and Hempstead, B.L. (2009). New insights in the biology of BDNF synthesis and release: implications in CNS function. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 12764-12767.
Hartwig, K., Fackler, V., Jaksch-Bogensperger, H., Winter, S., Furtner, T., Couillard-Despres, S., Meier, D., Moessler, H., and Aigner, L. (2014). Cerebrolysin protects PC12 cells from CoCl2-induced hypoxia employing GSK3beta signaling. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 38, 52-58.
Hou, N., Han, F., and Sun, X. (2015). The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clinical endocrinology 83, 339-343.
Hu, F.B. (2003). Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 38, 103-108.
Huh, J.Y. (2018). The role of exercise-induced myokines in regulating metabolism. Archives of pharmacal research 41, 14-29.
Huh, J.Y., Dincer, F., Mesfum, E., and Mantzoros, C.S. (2014). Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. International journal of obesity (2005) 38, 1538-1544.
Kamimura, M.A., Draibe, S.A., Avesani, C.M., Canziani, M.E., Colugnati, F.A., and Cuppari, L. (2007). Resting energy expenditure and its determinants in hemodialysis patients. European journal of clinical nutrition 61, 362-367.
Kobayashi, S., Maesato, K., Moriya, H., Ohtake, T., and Ikeda, T. (2005). Insulin resistance in patients with chronic kidney disease. American journal of kidney diseases : the official journal of the National Kidney Foundation 45, 275-280.
Kuloglu, T., Aydin, S., Eren, M.N., Yilmaz, M., Sahin, I., Kalayci, M., Sarman, E., Kaya, N., Yilmaz, O.F., Turk, A., et al. (2014). Irisin: a potentially candidate marker for myocardial infarction. Peptides 55, 85-91.
Lee, H.J., Lee, J.O., Kim, N., Kim, J.K., Kim, H.I., Lee, Y.W., Kim, S.J., Choi, J.I., Oh, Y., Kim, J.H., et al. (2015). Irisin, a Novel Myokine, Regulates Glucose Uptake in Skeletal Muscle Cells via AMPK. Molecular endocrinology (Baltimore, Md) 29, 873-881.
Levey, A.S., Becker, C., and Inker, L.A. (2015). Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. Jama 313, 837-846.
Levey, A.S., and Coresh, J. (2012). Chronic kidney disease. Lancet (London, England) 379, 165-180.
Li, D.J., Li, Y.H., Yuan, H.B., Qu, L.F., and Wang, P. (2017a). The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism: clinical and experimental 68, 31-42.
Li, S., Wang, Y., Wang, F., Hu, L.F., and Liu, C.F. (2017b). A New Perspective for Parkinson's Disease: Circadian Rhythm. Neuroscience bulletin 33, 62-72.
Little, H., Tan, S.Y., Cali, F., Rodriguez, S., Lei, X., Wolfe, A., Hug, C., and Wong, G.W. (2018). Multiplex quantification identifies novel exercise-regulated myokines/cytokines in plasma and in glycolytic and oxidative skeletal muscle. Molecular & cellular proteomics : MCP.
Liu, J. (2015). Irisin as an exercise-stimulated hormone binding crosstalk between organs. European review for medical and pharmacological sciences 19, 316-321.
Love, S. (2003). Apoptosis and brain ischaemia. Progress in Neuro-Psychopharmacology and Biological Psychiatry 27, 267-282.
Mattson, M.P. (2012). Evolutionary aspects of human exercise--born to run purposefully. Ageing research reviews 11, 347-352.
Mo, L., Shen, J., Liu, Q., Zhang, Y., Kuang, J., Pu, S., Cheng, S., Zou, M., Jiang, W., Jiang, C., et al. (2016). Irisin Is Regulated by CAR in Liver and Is a Mediator of Hepatic Glucose and Lipid Metabolism. Molecular endocrinology (Baltimore, Md) 30, 533-542.
Moreno-Navarrete, J.M., Ortega, F., Serrano, M., Guerra, E., Pardo, G., Tinahones, F., Ricart, W., and Fernandez-Real, J.M. (2013). Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. The Journal of clinical endocrinology and metabolism 98, E769-778.
Mu, S., Ouyang, L., Liu, B., Qu, H., Zhu, Y., Li, K., and Lei, W. (2011). Relationship between inflammatory reaction and ischemic injury of caudate-putamen in rats: inflammatory reaction and brain ischemia. Anatomical science international 86, 86-97.
Park, H., and Poo, M.M. (2013). Neurotrophin regulation of neural circuit development and function. Nature reviews Neuroscience 14, 7-23.
Park, J.W., Kwon, D.Y., Choi, J.H., Park, M.H., and Yoon, H.K. (2018). Olfactory dysfunctions in drug-naive Parkinson's disease with mild cognitive impairment. Parkinsonism & related disorders 46, 69-73.
Parng, C., Roy, N.M., Ton, C., Lin, Y., and McGrath, P. (2007). Neurotoxicity assessment using zebrafish. Journal of pharmacological and toxicological methods 55, 103-112.
Pedersen, B.K., and Febbraio, M.A. (2008). Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiological reviews 88, 1379-1406.
Pedersen, B.K., Steensberg, A., Fischer, C., Keller, C., Keller, P., Plomgaard, P., Febbraio, M., and Saltin, B. (2003). Searching for the exercise factor: is IL-6 a candidate? Journal of muscle research and cell motility 24, 113-119.
Peng, J., Deng, X., Huang, W., Yu, J.-h., Wang, J.-x., Wang, J.-p., Yang, S.-b., Liu, X., Wang, L., Zhang, Y., et al. (2017). Irisin protects against neuronal injury induced by oxygen-glucose deprivation in part depends on the inhibition of ROS-NLRP3 inflammatory signaling pathway. Molecular Immunology 91, 185-194.
Perakakis, N., Triantafyllou, G.A., Fernandez-Real, J.M., Huh, J.Y., Park, K.H., Seufert, J., and Mantzoros, C.S. (2017). Physiology and role of irisin in glucose homeostasis. Nature reviews Endocrinology 13, 324-337.
Perfeito, R., Cunha-Oliveira, T., and Rego, A.C. (2013). Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free radical biology & medicine 62, 186-201.
Pietilainen, K.H., Kaprio, J., Borg, P., Plasqui, G., Yki-Jarvinen, H., Kujala, U.M., Rose, R.J., Westerterp, K.R., and Rissanen, A. (2008). Physical inactivity and obesity: a vicious circle. Obesity (Silver Spring, Md) 16, 409-414.
Polyzos, S.A., Anastasilakis, A.D., Efstathiadou, Z.A., Makras, P., Perakakis, N., Kountouras, J., and Mantzoros, C.S. (2018). Irisin in metabolic diseases. Endocrine 59, 260-274.
Puyal, J., Ginet, V., and Clarke, P.G. (2013). Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Progress in neurobiology 105, 24-48.
Qiao, X., Nie, Y., Ma, Y., Chen, Y., Cheng, R., Yin, W., Hu, Y., Xu, W., and Xu, L. (2016). Corrigendum: Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Scientific reports 6, 21053.
Rodriguez-Carmona, A., Perez Fontan, M., Sangiao Alvarellos, S., Garcia Falcon, T., Pena Bello, M.L., Lopez Muniz, A., and Cordido, F. (2016). Serum levels of the adipomyokine irisin in patients with chronic kidney disease. Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia 36, 496-502.
Sandvik, L., Erikssen, J., Thaulow, E., Erikssen, G., Mundal, R., and Rodahl, K. (1993). Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men. The New England journal of medicine 328, 533-537.
Saxena, S., Shukla, D., and Bansal, A. (2012). Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride. Toxicology and applied pharmacology 264, 324-334.
Schumacher, M.A., Chinnam, N., Ohashi, T., Shah, R.S., and Erickson, H.P. (2013). The structure of irisin reveals a novel intersubunit beta-sheet fibronectin type III (FNIII) dimer: implications for receptor activation. The Journal of biological chemistry 288, 33738-33744.
Shipley, M.M., Mangold, C.A., and Szpara, M.L. (2016). Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. Journal of visualized experiments : JoVE, 53193.
Ungerstedt, U. (1968). 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. European journal of pharmacology 5, 107-110.
Wang, H., Zhao, Y.T., Zhang, S., Dubielecka, P.M., Du, J., Yano, N., Chin, Y.E., Zhuang, S., Qin, G., and Zhao, T.C. (2017). Irisin plays a pivotal role to protect the heart against ischemia and reperfusion injury. Journal of cellular physiology 232, 3775-3785.
White, B.C., Sullivan, J.M., DeGracia, D.J., O'Neil, B.J., Neumar, R.W., Grossman, L.I., Rafols, J.A., and Krause, G.S. (2000). Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. Journal of the neurological sciences 179, 1-33.
Wrann, C.D., White, J.P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., Lin, J.D., Greenberg, M.E., and Spiegelman, B.M. (2013). Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell metabolism 18, 649-659.
Xi, Y., Feng, D., Tao, K., Wang, R., Shi, Y., Qin, H., Murphy, M.P., Yang, Q., and Zhao, G. (2018). MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1alpha. Biochimica et biophysica acta.
Xicoy, H., Wieringa, B., and Martens, G.J. (2017). The SH-SY5Y cell line in Parkinson's disease research: a systematic review. Molecular neurodegeneration 12, 10.
Xin, C., Liu, J., Zhang, J., Zhu, D., Wang, H., Xiong, L., Lee, Y., Ye, J., Lian, K., Xu, C., et al. (2016). Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. International journal of obesity (2005) 40, 443-451.
Xiong, X.Q., Chen, D., Sun, H.J., Ding, L., Wang, J.J., Chen, Q., Li, Y.H., Zhou, Y.B., Han, Y., Zhang, F., et al. (2015). FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochimica et biophysica acta 1852, 1867-1875.
Zhang, C., Ding, Z., Lv, G., Li, J., Zhou, P., and Zhang, J. (2016). Lower irisin level in patients with type 2 diabetes mellitus: A case-control study and meta-analysis. Journal of diabetes 8, 56-62.
Zhang, C., Li, C., Chen, S., Li, Z., Jia, X., Wang, K., Bao, J., Liang, Y., Wang, X., Chen, M., et al. (2017). Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways. Redox biology 11, 1-11.
Zhang, M., Chen, P., Chen, S., Sun, Q., Zeng, Q.C., Chen, J.Y., Liu, Y.X., Cao, X.H., Ren, M., and Wang, J.K. (2014a). The association of new inflammatory markers with type 2 diabetes mellitus and macrovascular complications: a preliminary study. European review for medical and pharmacological sciences 18, 1567-1572.
Zhang, Y., Li, R., Meng, Y., Li, S., Donelan, W., Zhao, Y., Qi, L., Zhang, M., Wang, X., Cui, T., et al. (2014b). Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63, 514-525.
Zhao, Y.T., Wang, H., Zhang, S., Du, J., Zhuang, S., and Zhao, T.C. (2016). Irisin Ameliorates Hypoxia/Reoxygenation-Induced Injury through Modulation of Histone Deacetylase 4. PloS one 11, e0166182.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.136.97.64
論文開放下載的時間是 校外不公開

Your IP address is 3.136.97.64
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code