Responsive image
博碩士論文 etd-0715118-111118 詳細資訊
Title page for etd-0715118-111118
論文名稱
Title
利用蝕刻光子晶體光纖製作高靈敏度的開放式共振腔馬赫-桑德光纖干涉儀感測器
Highly Sensitive Open-Cavity Mach-Zehnder Interferometer Sensor Based on Etched Photonic Crystal Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-26
繳交日期
Date of Submission
2018-08-15
關鍵字
Keywords
Mach-Zehnder 光纖干涉儀、開放式共振腔、折射率感測、光子晶體光纖、斜角光纖
Open-cavity, Fiber-optic Mach-Zehnder interferometer, Photonics crystal fiber, Refractive index sensing, Beveled fiber
統計
Statistics
本論文已被瀏覽 5693 次,被下載 0
The thesis/dissertation has been browsed 5693 times, has been downloaded 0 times.
中文摘要
Mach-Zehnder 光纖干涉儀擁有許多優點,如體積小、解析度高以及感測靈敏
度高等,因此有許多的研究結果被廣泛地提出,其中開放式共振腔的 Mach
Zehnder 光纖干涉儀更因為擁有極高的折射率感測特性,因此適合應用於感測微
小的折射率變化。過去曾有研究團隊利用錯位熔接的方式來製作開放式元件,但
是製程步驟困難,且需要精準地對齊熔接;亦有團隊提出以飛秒雷射進行加工,
但製程上需要昂貴實驗儀器而使製程成本大幅提高。本論文將利用光纖研磨的技
術製作斜角光纖,並熔接蝕刻後的光子晶體光纖,製作成開放式 Mach-Zehnder
光纖干涉儀。相較於錯位熔接製程,我們所提出的製程步驟較簡單,且不需要使
用飛秒雷射製程,可以有效地降低製程成本。
我們將所製作的開放式 Mach-Zehnder 光纖干涉儀進行實驗量測,並討論不
同纖芯直徑以及共振腔長度對干涉條紋的影響,且由自由頻譜範圍增加的現象可
以證明液體能成功地填入共振腔中。在感測結果方面,我們所製作的元件在折射
率範圍為 1.3330 至 1.3418 以及氣壓範圍為 0 至 20 psi 時,皆擁有極高的感測靈
敏度,分別為-10462.7 nm/RIU 和-63.71 pm/psi,並可以計算出其感測極限為
-64.78 10  RIU 以及 0.159 psi,說明元件可以感測微小的折射率變化。此外,此元
件的溫度靈敏度為31.23 pm/℃,而應變靈敏度則為1.06 pm/με和 -4 1.04 10  dB/με。
上述之感測特性皆展示了我們所製作的開放式 Mach-Zehnder 光纖干涉儀擁有極
高的潛力應用於環境感測上。
Abstract
Fiber-optic Mach-Zehnder interferometers (MZIs) have been widely proposed due
to their advantages such as compact size, high resolution, and high sensing sensitivity.
Especially, MZIs with open cavities exhibit ultrahigh refractive index (RI) sensitivities,
which can be applied in detecting slight RI variation. Previous studies have proposed
several open-cavity MZIs by splicing fibres with a large lateral offset, which are
difficult to be fabricated due to the required precise alignment. Some research groups
utilize femtosecond (fs) lasers to fabricate open-cavity MZIs, which results in high cost.
In this thesis we propose a method to fabricate an open-cavity MZI by splicing an
etched photonic crystal fiber (PCF) with a beveled fiber formed by fiber polishing
technology. Our manufacturing process is simple, and no high-cost fs lasers are required.
The interference properties of our MZI are experimentally demonstrated and
discussed with different core sizes and cavity lengthes. It is proved by the increase of
the free spectrum range that the liquid indeed can be filled into the open cavity
successfully. In sensing properties, our MZI exhibits an ultrahigh RI sensitivity of
10462.7 nm/RIU in the RI range of 1.3330 to 1.3418 and pressure sensitivity of -63.71
pm/psi in the pressure range of 0 to 20 psi. Besides, the corresponding detection limits
are -6 4.78 10  RIU and 0.159 psi, respectively, which indicates that our MZI can detect
slight RI variation. Moreover, the temperature sensitivity of our MZI is 31.23 pm/℃,
and the strain sensitivity of the MZI is 1.06 pm/με and -4 1.04 10  dB/με. As a result,
our fabricated MZI sensor possess good potential in environmental parameter sensing.
目次 Table of Contents
論文審定書 i
致 謝 ii
摘 要 iii
Abstract iv
目 錄 v
圖目錄 vii
表目錄 xi
第一章  緒論 1
  1-1  光纖感測器 1
  1-2  光纖干涉儀感測器 3
    1-2.1 法布立-培若光纖干涉儀(Fabry-Pérot fiber interferometer) 5
    1-2.2 馬赫-桑德光纖干涉儀(Mach-Zehnder fiber interferometer) 9
    1-2.3 麥克森光纖干涉儀(Michelson fiber interferometer) 12
    1-2.4 薩格奈克光纖干涉儀(Sagnac fiber interferometer) 15
  1-3  研究動機 18
第二章  Mach-Zehnder光纖干涉儀 19
  2-1  Mach-Zehnder光纖干涉儀 19
  2-2  開放式Mach-Zehnder光纖干涉儀 20
  2-3  開放式Mach-Zehnder光纖干涉儀的原理 24
第三章  開放式Mach-Zehnder光纖干涉儀之元件製程 28
  3-1  元件設計 28
  3-2  光纖材料 29
  3-3  製程步驟 30
    3-3.1 光纖熔接 30
    3-3.2 製作同軸結構光纖 31
    3-3.3 製作斜角光纖 34
    3-3.4 製作開放式Mach-Zehnder光纖干涉儀 36
  3-4  蝕刻製程特性 37
第四章  開放式Mach-Zehnder光纖干涉儀的干涉特性 40
  4-1  頻譜量測架設 40
  4-2  不同纖芯直徑的干涉特性量測 42
  4-3  不同共振腔長度的干涉特性量測 45
  4-4  不同研磨量之斜角光纖所形成的開放式共振腔 48
第五章  開放式Mach-Zehnder光纖干涉儀的感測應用 51
  5-1  折射率感測 51
  5-2  氣壓感測 55
  5-3  溫度感測 58
  5-4  應變感測 61
第六章  結論 63
參考文獻 64
參考文獻 References
[1] J. Hecht, “A short history of laser development,” Appl. Opt., vol. 49, pp. F99-F122,
2010.
[2] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical
frequencies,” Proc. Inst. Electr. Eng., vol. 113, pp. 1151-1158, 1966.
[3] K. Chah, D. Kinet, and C. Caucheteur, “Negative axial strain sensitivity in gold
coated eccentric fiber Bragg gratings,” Sci. Rep., vol. 6, pp. 38042, 2016.
[4] Q. Rong, T. Guo, W. Bao, Z. Shao, G. D. Peng, and X. Qiao, “Highly sensitive
fiber-optic accelerometer by grating inscription in specific core dip fiber,” Sci.
Rep., vol. 7, pp. 11856, 2017.
[5] D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Single-mode optical
fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt.,
vol. 19, pp. 2926-2929, 1980.
[6] S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong,
J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved
Fabry-Pérot interferometer,” Opt. Lett., vol. 39, pp. 2121-2124, 2014.
[7] S. Liu, K. Yang, Y. Wang, J. Qu, C. Liao, J. He, Z. Li, G. Yin, B. Sun, J. Zhou, G.
Wang, J. Tang, and J. Zhao, “High-sensitivity strain sensor based on in-fiber
rectangular air bubble,” Sci. Rep., vol. 5, pp. 7624, 2015.
[8] J. Ma, W. Jin, H. L. Ho, and J. Y. Dai, “High-sensitivity fiber-tip pressure sensor
with graphene diaphragm,” Opt. Lett., vol. 37, pp. 2493-2495, 2012.
[9] Y. Zhu, K. L. Cooper, G. R. Pickrell, and A. Wang, “High-temperature fiber-tip
pressure sensor,” J. Lightwave Technol., vol. 24, pp. 861-869, 2006.
[10] F. Xu, D. Ren, X. Shi, C. Li, W. Lu, L. Lu, L. Lu, and B. Yu, “High-sensitivity
65

Fabry-Pérot interferometric pressure sensor based on a nanothick silver
diaphragm,” Opt. Lett., vol. 37, pp. 133-135, 2012.
[11] T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive
miniaturized fiber inline Fabry-Pérot interferometer for highly sensitive refractive
index measurement,” Opt. Exp., vol. 16, pp. 5764-5769, 2008.
[12] W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber
milled by focused ion beam and its application for Fabry-Pérot refractive index
sensor,” Rev. Sci. Instrum., vol. 82, pp. 076103, 2011.
[13] L. Yuan, J. Huang, X. Lan, H. Wang, L. Jiang, and H. Xiao, “All-in-fiber
optofluidic sensor fabricated by femtosecond laser assisted chemical etching,” Opt.
Lett., vol. 39, pp. 2358-2361, 2014.
[14] Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal
fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett., vol. 32, pp.
3071-3073, 2007.
[15] M. Quan, J. Tian, and Y. Yao, “Ultra-high sensitivity Fabry-Pérot interferometer
gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect,”
Opt. Lett., vol. 40, pp. 4891-4894, 2015.
[16] Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou,
“Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer
created in twin-core fiber,” Opt. Lett., vol. 39, pp. 4982-4985, 2014.
[17] Y. Wang, M. W. Yang, D. N. Wang, S. J. Liu, and P. X. Lu, “Fiber in-line Mach
Zehnder interferometer fabricated by femtosecond laser micromachining for
refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B, vol. 27,
pp. 370-374, 2010.
[18] F. Chen, Y. Jiang, L. Zhang, L. Jiang, and S. Wang, “Fiber optic refractive index
66

and magnetic field sensors based on microhole-induced inline Mach-Zehnder
interferometers,” Meas. Sci. & Technol., vol. 29, pp. 045103, 2018.
[19] J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z.
Li, “Simultaneous measurement of strain and temperature by employing fiber
Mach-Zehnder interferometer,” Opt. Exp., vol. 22, pp. 1680-1686, 2014.
[20] S. C. Gao, “Ultrasensitive refractive index sensor based on micro-ber-assisted U
shape cavity,” IEEE Photon. Technol. Lett., vol. 25, pp. 1815-1818, 2013.
[21] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type
interferometers formed in photonic crystal fiber,” Opt. Exp., vol. 15, pp. 5711
5720, 2007.
[22] K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending characteristics of hetero
core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans.
Electron., vol. 83, pp. 309-314, 2000.
[23] B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. He, “Low-cost high-performance
fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Exp.,
vol. 17, pp. 22296-22302, 2009.
[24] A. Seki, H. Katakura, T. Kai, M. Iga, and K. Watanabe, “A hetero-core structured
fiber optic pH sensor,” Anal. Chem. Acta, vol. 582, pp. 154-157, 2007.
[25] S. Akita, H. Sasaki, K. Watanabe, and A. Seki, “A humidity sensor based on a
hetero-core optical fiber,” Sens. & Actuators B Chem., vol. 147, pp. 385-391, 2010.
[26] B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. He, “Optical fiber relative
humidity sensor based on FBG incorporated thin-core fiber modal interferometer,”
Opt. Exp., vol. 19, pp. 4140-4146, 2011.
[27] X. Huang, X. Li, J. Yang, C. Tao, X. Guo, H. Bao, Y. Yin, H. Chen, and Y. Zhu,
“An in-line Mach-Zehnder interferometer using thin-core fiber for ammonia gas
67

sensing with high sensitivity,” Sci. Rep., vol. 7, pp. 44994, 2017.
[28] C. Lu, X. Dong, and J. Su, “Detection of refractive index change from the critical
wavelength of an etched few mode fiber,” J. Lightwave Technol., vol. 35, pp. 2593
2597, 2017.
[29] H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, I. Bennion, “Implementation
and characterization of liquid-level sensor based on a long-period fiber grating
Mach–Zehnder interferometer,” IEEE Sensors J., vol. 11, pp. 2878-2882, 2011.
[30] J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. He, “Fiber-taper seeded long
period grating pair as a highly sensitive refractive-index sensor,” IEEE Photon.
Technol. Lett., vol. 17, pp. 1247-1249, 2005.
[31] J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High
sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned
optical fiber for refractive index sensing,” Appl. Opt., vol. 50, pp. 5503-5507, 2011.
[32] H. Cao and X. Shu, “Miniature all-fiber high temperature sensor based on
Michelson interferometer formed with a novel core-mismatching fiber joint,”
IEEE Sens. J., vol. 17, pp. 3341-3345, 2017.
[33] Z. Tian, S. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt
taper Michelson interferometer in a single-mode fiber,” Opt. Lett., vol. 33, pp.
1105-1107, 2008.
[34] P. Hu, X. Dong, K. Ni, L. H. Chen, W. C. Wong, and C. C. Chan, “Sensitivity
enhanced Michelson interferometric humidity sensor with waist-enlarged fibre
bitaper,” Sens. & Actuators B Chem., vol. 194, pp. 180-184, 2014.
[35] X. Yang, Q. Zhao, X. Qi, Q. Long, W. Yu, and L. Yuan, “In-fiber integrated gas
pressure sensor based on a hollow optical fiber with two cores,” Sens. & Actuators
A Phys., vol. 272, pp. 23-27, 2018.
68

[36] X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with
polarization-maintaining photonic crystal fiber based Sagnac interferometer,”
Appl. Phys. Lett., vol. 90, pp. 151113, 2007.
[37] Z. Liu, L. Htein, K. K. Lee, K. T. Lau, and H. Y. Tam, “Large dynamic range
pressure sensor based on two semicircle-holes microstructured fiber,” Sci. Rep.,
vol. 8, pp. 65, 2018.
[38] N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based
on D-shaped microstructured optical fiber with hollow core,” Opt. Exp., vol. 23,
pp. 8576-8582, 2015.
[39] N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core
microstructured optical fiber placed with a silver wire,” IEEE Photon. J., vol. 8,
pp. 4800508, 2016.
[40] V. L. Iezzi, S. Loranger, and R. Kashyap, “High sensitivity distributed temperature
fiber sensor using stimulated Brillouin scattering,” Opt. Exp., vol. 25, pp. 32591
32601, 2017.
[41] L. Mach, “Üeber einen Interferenz-refraktor,” Zeitschrift für Instrumentenkunde,
vol. 12, pp. 89-93, 1892.
[42] S. K. Sheem and T. G. Giallorenzi, “Single-mode fiber-optical power divider:
encapsulated etching technique,” Opt. Lett., vol. 4, pp. 29-31, 1979.
[43] S. K. Sheem and T. G. Giallorenzi, “Polarization effects on single-mode optical
fiber sensors,” Appl. Phys. Lett., vol. 35, pp. 914-917, 1979.
[44] J. C. Du, “Fiber in-line Mach-Zehnder interferometer based on etched photonics
crystal fiber,” Master thesis, Department of photonics, National Sun Yat-sen Univ.,
Kaohsiung, Taiwan, R. O. C., 2016.
[45] X. Tan, Y. Geng, X. Li, R. Gao, and Z. Yin, “High temperature microstructured
69

fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Pérot
interferometer,” Appl. Opt., vol. 52, pp. 8195-8198, 2013.
[46] W. M. B. Yunus and A. B. Rahman, “Refractive index of solution at high
concentrations,” Appl. Opt., vol. 27, pp. 3341-3343, 1988.
[47] G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt., vol.
18, pp. 1445-1448, 1979.
[48] S. Murtry, J. D. Wright, and D. A. Jackson, “Sensing applications of a low
coherence fibre-optic interferometer measuring the refractive index of air,” Sens.
& Actuators B Chem., vol. 72, pp. 69-74, 2001.
[49] R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto,
and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber
Bragg grating refractometer,” Opt. Commun., vol. 281, pp. 621-625, 2008.
[50] Z. Feng, J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach
Zehnder interferometer for high temperature measurement,” Sensors, vol. 14, pp.
14210-14221, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code