Responsive image
博碩士論文 etd-0715118-142621 詳細資訊
Title page for etd-0715118-142621
論文名稱
Title
以數值方法研究直接式能量沉積過程
Numerical Simulation of the Direct Energy Deposition Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-23
繳交日期
Date of Submission
2018-08-16
關鍵字
Keywords
直接式能量沉積、表面張力、馬倫格尼力、積層製造、固化和液化
surface tension, solidification and melting, direct energy deposition, additive manufacturing, Marangoni force
統計
Statistics
本論文已被瀏覽 5671 次,被下載 104
The thesis/dissertation has been browsed 5671 times, has been downloaded 104 times.
中文摘要
本研究目的為建立積層製造(Additive Manufacturing)中的直接式能量沉積(Direct Energy Deposition,DED)模型。在模擬金屬受高斯雷射之加工過程中,假設基板需達到熔點形成融池,粉末才會開始沉積於基板上,並同時考慮表面張力(Surface tension)、馬倫格尼力(Marangoni force)、固化及液化模型,使金屬於相變化過程中更符合實際物理現象。於本文中,金屬粉末將假設為由經驗方程式而得之沉積率函數,以此建立三維模型。但由於三維模型計算量龐大,故將三維模型轉換為二維模型做計算,將空間軸(z)轉換為時間軸(t),使雷射強度及粉末沉積速率呈現高斯分布於時間軸(t)與空間軸(x)上,朝等效二維模型發展。再以等效二維模型模擬三維熔覆層軌跡中穩定成長平台,此平台代表熔覆層高度及寬度幾乎不再隨進給方向而有所變化。
模型建立後,可透過大量模擬建立數值模擬融覆軌跡截面圖,得到加工參數,並預測加工結果,於實際加工前可避免選用易導致融覆層脫層之參數,減少原料成本浪費及尋找參數之時程。
Abstract
The purpose of this study is to develop a numerical model presenting for a direct energy deposition process. In order to make the thermal and fluidic behaviors more accurate, the additional terms such as surface tension, Marangoni force, Gaussian laser, solidification and melting are considered. In this article, the assumption that the powder source term is a function derived from the empirical equation is applied to three-dimension model. However, due to the enormous computational time in three-dimension model, the equivalent two-dimension model, in which the space axis (z) is converted into time axis (t), is built. It means the laser intensity and powder deposition rate are distributed as Gaussian functions on x-t plane and therefore the three-dimension problem can be solved. The two-dimension model is used to simulate the deposition platform, of which the width and height are not changed with scanning direction in three-dimension model.
The laser tracks cross-section map established by numerous simulation results demonstrates clearly the process parameters, and is capable of predicting the results of actual processing. Furthermore, it is possible to avoid choosing the parameters leading to detached laser tracks and to lower the cost of raw material.
目次 Table of Contents
目錄
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
符號說明 x
第一章 緒論 1
1.1 積層製造背景 1
1.2 直接式能量沉積技術 3
1.3 文獻回顧 6
1.4 研究目的 11
第二章 研究方法 12
第三章 結果與討論 19
3.1 二維模型 19
3.1.1 等效二維模型 19
3.1.2 數值模型與流場設定 22
3.1.3 模擬結果 26
3.1.4 模擬分析 31
3.2 三維模型 36
3.2.1 數值模型與流場設定 36
3.2.2 模擬結果 38
3.2.3 以等效二維模型模擬三維模型 41
第四章 結論與未來展望 44
4.1 結論 44
4.2 未來展望 45
參考文獻 52
參考文獻 References
參考文獻
[1] Gibson, I., Rosen, D. W., and Stucker, B., 2010, Additive manufacturing technologies, New York, Springer, 238.
[2] Bradshaw, S., Bowyer, A., and Haufe, P., 2010, The Intellectual Property Implications of Low-cost 3D Printing, scripted, 7(1), 5-31.
[3] Shamsaei, N., Yadollahi, A., Bian, L., Thompson, S. M., 2015, An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control, Additive Manufacturing, 8, 12-35.
[4] ASTM International., 2013, Standard Terminology for Additive Manufacturing Technologies, Designation: F2792-12a.
[5] Froes F.H. and Dutta B., 2014, The Additive Manufacturing (AM) of Titanium Alloys, Advanced Materials Research, 1019, 19-25.
[6] Murr, L. E., Gaytan, S. M., Median, F., Lopez, H., Martinez, E., Machado, B. I., Hernandez, D. H., Martinez, L., Lopez, M. I., Wicker, R.B., and Bracke, J., 2010, Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays, Philosophical Transactions of the Royal Society of London A, Mathematical, Physical and Engineering Sciences, 368(1917), 1999-2032.
[7] Murphy, S. V., and Atala, A., 2014, 3D bioprinting of tissues and organs, Nature biotechnology, 32(8), 773-785.
[8] Sher, D., and Tutó, X., 2015, Review of 3D food printing, ELISAVA Temes de disseny, 31, 104-117.
[9] Kong, F., Zhang, H., and Wang, G., 2008, Numerical Simulation of Transient Multiphase Field During Hybrid Plasma-Laser Deposition Manufacturing, Journal of Heat Transfer, 130(11), 112101.
[10] Ibarra-Medina, J., Vogel, M., and Pinkerton, A. J., 2011, A CFD model of laser cladding: from deposition head to melt pool dynamics, 30th International Congress on Applications of Lasers and Electro-optics, 708, 378-386.
[11] Picasso, M., Marsden, C. F., Wagniere, J. D., Frenk, A., Rappaz M., 1994, A simple but realistic model for laser cladding, Metallurgical and Materials Transactions B, 25(2), 281-291.
[12] Kheloufi, K., and Amara, E. H., 2011, Simulation of Geometry and Heat Transfer in a Thin Wall Produced by Direct Laser Powder Deposition, In Advanced Materials Research, 227, 134-137.
[13] Choi, J., Han, L., and Hua, Y., 2005, Modeling and experiments of laser cladding with droplet injection, Journal of heat transfer, 127(9), 978-986.
[14] Han, L., Phatak, K. M., and Liou, F. W., 2004, Modeling of laser cladding with powder injection, Metallurgical and Materials Transactions B, 35(6), 1139-1150.
[15] Li, Y., Yang, H., Lin, X., Huang, X., Li, J., Zhou, Y., 2003, The influences of processing parameters on forming characterizations during laser rapid forming, Materials Science and Engineering, A360, 18-25.
[16] Felde, I., Reti, T., Zoltan, K., Costa, L., Colaco, R., Vilar R., Verö, B., 2003, A simple technique to estimate the processing window for laser clad coatings, Surface Engineering Coatings and Heat Treatments 2002: Proceedings of the 1st ASM International Surface Engineering and the 13th IFHTSE Congress, ASM International, 237-242.
[17] De Oliveira, U., Ocelı´k, V., De Hosson, J.Th.M., 2005, Analysis of coaxial laser cladding processing conditions, Surface & Coatings Technology, 197, 127-136.
[18] Hirt, C. W., and Nichols, B. D., 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, 39(1), 201-225.
[19] Osher, S., and Sethian, J. A., 1988, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of computational physics, 79(1), 12-49.
[20] Mirzade, F. K., Niziev, V. G., Panchenko, V. Y., Khomenko, M. D., Grishaev, R. V., Pityana, S., and van Rooyen, C., 2013, Kinetic approach in numerical modeling of melting and crystallization at laser cladding with powder injection, Physica B: Condensed Matter, 423, 69-76.
[21] Carman, P. C., 1997, Solidification and Melting, Chemical Engineering Research and Design, 75, S32-S48.
[22] Zhang, H.-O., Kong, F.-R., Wang, G.-L., and Zeng, L.-F., 2006, Numerical simulation of multiphase transient field during plasma deposition manufacturing, Journal of applied physics, 100(2).
[23] Marangoni, C., 1865, Sull'espansione delle goccie d'un liquido galleggianti sulla superficie di altro liquid, Tipographia dei fratelli Fusi, Pavia.
[24] Qi, H., Mazumder, J., and Ki, H., 2006, Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition, Journal of applied physics, 100(2).
[25] Qiu, C., Panwisawas, C., Ward, M., Basoalto, H. C., and Brooks, J. W., 2015, On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Materialia, 96, 72-79.
[26] He, X., DebRoy, T., Fuerschbach, P. W., 2003, Alloying element vaporization during laser spot welding of stainless steel, Phys. D: Appl. Phys., 36, 3079-3088.
[27] Lei, Y. P., Murakawa, H., Shi, Y. W., Li, X. Y., 2001, Numerical analysis of the competitive influence of Marangoni flow and evaporation on heat surface temperature and molten pool shape in laser surface remelting, 21, 276-290.
[28] Courtois, M., Carin, M., Masson, P. L., Gaied, S., Balabane, M., 2013, A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding, J. Phys. D: Appl. Phys., 46(505305), 1-14.
[29] Courtois, M., Carin, M., Masson, P. L., Gaied, S., Balabane, M., 2014, A complete model of keyhole and melt pool dynamics to analyze instabilities and collapse during laser welding, J. Laser Appl., 26(4), 042001-1-9.
[30] Han, L., Liou, F. W., Musti, S., 2005, Thermal Behavior and Geometry Model of Melt Pool in Laser Material Process, Journal of Heat Transfer , 127, 1005-1014.
[31] Wen, S. Y., Shin, Y. C., Murthy, J. Y., and Sojka, P. E., 2009, Modeling of coaxial powder flow for the laser direct deposition process, International Journal of Heat and Mass Transfer, 52(25) , 5867-5877.
[32] Wen, S., and Shin, Y. C., 2010, Modeling of transport phenomena during the coaxial laser direct deposition process, Journal of Applied Physics, 108(4).
[33] Ibarra-Medina, J., and Pinkerton, A. J., 2010, A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding, Physics Procedia, 5, 337-346.
[34] He, X., and Mazumder, J., 2007. Transport phenomena during direct metal deposition, Journal of Applied. Physics, 101(5).
[35] Jouvard, J.M., Grevey, D. F., Lemoine, F., Vannes A. B., 1997, Continuous wave Nd:YAG laser cladding modeling: a physical study of track creation during low power processing, Journal of Laser applications, 9, 43-50.
[36] Lin, J., 2000, Laser attenuation of the focused powder streams in coaxial laser cladding, Journal of laser applications, 12(1), 28-33.
[37] Brackbill J, Kothe DB, Zemach C, 1992, A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-54.
[38] ANSYS Documentation, Fluent Theory Guide 15.0.
[39] Issa, R. I., E., 1986, Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting, J. Comput. Phys., 62(1), 40-65.
[40] Ferzieger, J. L. and Peric, M., 1996, Computational Methods for Fluid Dynamics, Springer-Verlag.
[41] Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere.
[42] Barth, T. J. and Jespersen, D., 1989, The design and application of upwind schemes on unstructured meshes, Technical Report AIAA-89-0366, AIAA 27th Aerospace Sciences Meeting.
[43] Ubbink, O., 1997, Numerical Prediction of Two Fluid Systems With Sharp Interfaces, PhD thesis, Imperial College of Science, Technology and Medicine.
[44] Ohmura, E., Hmura, Y., Makinouchi, S., 1983, Laser Hardening Using Step Function Heat Input, Bulletin of the JSME, 26(219), 1670-1677.
[45] Weisheit, A., Backes, G., Stromeyer, R., Gasser, A., Wissenbach, K., Poprawe, R., 2001, Powder injection: The key to reconditioning and generating components using laser cladding, Proceedings of the International Congress on Advanced Materials and Processes.
[46] Höche, D., Müller, S., Rapin, G., Shinn, M., Remdt, E., Gubisch, M., Schaaf, P., 2009, Marangoni convection during free electron laser nitriding of titanium, Metallurgical and materials transactions B, 40(4), 497-507.
[47] Elghobashi, S., 1994, On predicting particle-laden turbulent flows, Applied Scientific Research, 52, 309-329.
[48] Gao, L.J., 2018, 建立離散相模型及提供離散相粉末相關數據
[49] Wen, S., and Shin, Y. C., 2011, Modeling of the off-axis high power diode laser cladding process, Journal of heat transfer, 133(3), 031007(1-10).
[50] Bedenko, D.V., Kovalev, O.B., Smurov, I., Zaitsev, A.V., 2016, Numerical simulation of transport phenomena, formation the bead and thermal behavior in application to industrial DMD technology, 95, 902-912.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code