Responsive image
博碩士論文 etd-0715118-154951 詳細資訊
Title page for etd-0715118-154951
論文名稱
Title
凹入與偏移背電場之雙面照光異質單晶矽太陽能電池
Recessed and Shifted Back-Surface-Field Crystalline Silicon Solar Cells with Heterojunction for Bifacial Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-27
繳交日期
Date of Submission
2018-08-16
關鍵字
Keywords
交趾式背電極、雙面照光太陽能電池、異質接面結構、太陽能電池、非晶矽
solar cell, bifacial solar cell, heterojunction structure, amorphous silicon, interdigitated back contact
統計
Statistics
本論文已被瀏覽 5650 次,被下載 0
The thesis/dissertation has been browsed 5650 times, has been downloaded 0 times.
中文摘要
在本篇論文中,我們在單晶矽 (c-Si) 基板上沉積高品質氫化非晶矽層 (a-Si:H) 減少懸浮鍵(dangling bonds)與載子複合和利用凹入式結構增加等效背電場 (Back Surface Field, BSF) 區域使短路電流 (Jsc) 增加。同時我們設計凹入與偏移背電場之雙面照光異質單晶矽太陽能電池兩種架構作為雙面照光應用。我們使用Silvaco TCAD Altas來進行太陽能特性模擬。在環境光強度 (intensity of albedo) 為30 %時,我們的凹入式背電場單晶矽太陽能電池 (Recessed Back Surface Field Silicon HeteroJunction solar cell, RBSF-SHJ) 短路電流與轉換效率 (η) 可達到 47.02 mA/cm2 與 30.16 %。與沒有凹入式結構的太陽能電池 (flat SHJ solar cell) 相比,短路電流與轉換效率可以增加9.14 %與9.2 %。當環境光強度為100 % 時,短路電流與轉換效率可以增加12.67 % 與 12.83 %。如果將上下對稱的背電場區域作相對位置偏移 (shift) ,在單面照光的情況下,與凹入式背電場單晶矽太陽能電池相比,填充因子 (FF) 可以從82.67 % 增加到 83.24 %。而在環境光強度為30 % 與 100 % 時,填充因子可以從82.9 %增加到 83.5 % 與 83.96 % 增加到 84.96 %。
Abstract
In this thesis, we proposed recessed and shifted back-surface-field crystalline silicon solar cells with heterojunction for bifacial application. To achieve high efficiency in bifacial application, recessed Back-Surface-Field (BSF) are designed on the crystalline silicon (c-Si) wafer with high quality hydrogenated amorphous silicon layer to improve the short-circuit current (Jsc) and reduce the carrier recombination. We perform simulation analysis by utilizing Silvaco TCAD Altas. At an albedo intensity of 30%, our Recessed BSF (RBSF) Silicon HeteroJunction (SHJ) solar cell reaches a 47.02 mA/cm2 Jsc and 30.16 % of conversion efficiency (η) which is 9.14 % and 9.2 % more than the Jsc and η of flat SJT solar cell thank to the additional recessed BSF area. When the albedo intensity reaches 100%, the increase percentages of Jsc and η arrive 12.67 % and 12.83%, respectively. If we shift the relative position with respect to the symmetrical BSF structure, Fill Fact (FF) increases from 82.67 % to 83.24 % in the monofacial condition. At an albedo intensity of 30 % and 100 %, FF increase from 82.9 % and 83.5 % to 83.96 % and 84.96 %, respectively.
目次 Table of Contents
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
Contents vi
Figure Captions viii
Table Captions xi
Chapter 1 Introduction 1
1.1 Background and importance 2
1.2 Motivation 9
Chapter 2 Device fabrication 12
2.1 Device simulation 12
2.1.1 Device fabrication 12
2.1.2 Physical models and parameters of simulation 13
2.2 Process flow of device 15
2.2.1 Recessed and shifted back-surface-field solar cell 15
2.2.2 Process flow and fabrication 15
Chapter 3 Design and simulation for new devices 17
3.1 Calibration for parameters of simulation 18
3.2 Recessed back-surface-field solar cell 20
3.2.1 Design of back surface field and high percentage of emitter region 20
3.3 Design window for depth of aluminum electrodes in the substrate (dAL) and width of emitter region (We) 22
3.4 Influence of the width (WAL) of aluminum electrodes on RBSF solar cell 27
3.5 Variation of doping concentration for each layer of RBSF solar cell 29
3.5.1 Optimizing doping concentration in the p+ layer of emitter region for RBSF solar cell 29
3.5.2 Optimizing the doping concentration (Nd_n+ layer) in the n+ layer of BSF region for RBSF solar cell 31
3.5.3 Optimizing substrate doping concentration of RBSF solar cell 35
3.6 Variation of the relative distance between top and bottom of BSF for RBSF solar cell 37
3.7 Performance in different albedos for RBSF solar cell and RSBSF solar cell 40
3.8 Influence of the n-type substrate quality (lifetime) of RBSF and RSBSF solar cell 44
3.9 Influence of temperature on RBSF and RSBSF solar cell 48
3.10 Influence of different ambient lighting on RBSF and RSBSF solar cell 52
Chapter 4 Conclusion and Future Work 56
4.1 Conclusion 56
4.2 Future Work 57
Reference 58
Appendix 70
A. Initial experimental results and discusses 70
A. 1 Monofacial condition 70
A. 2 Bifacial condition 71
參考文獻 References
[1] U.S Energy Informaton Administration, “Annual Energy Outlook 2018 - with projection to 2050,” in Proc. Annu. Energy Outlook, pp. 1–75, 2018. doi: 10.1016/j.enpol.2018.03.072
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power ,” J. Appl. Phys., vol. 25, no. 5, pp. 676–677, 1954. doi: doi.org/10.1063/1.1721711
[3] T. Dullweber and J. Schmidt, “Industrial Silicon Solar Cells Applying the Passivated Emitter and Rear Cell (PERC) Concept - A Review,” IEEE J. Photovoltaics, vol. 6, no. 5, pp. 1366–1381, 2016. doi: 10.1109/JPHOTOV.2016.2571627
[4] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% Record efficiency HIT solar cell on thin silicon wafer,” IEEE J. Photovoltaics, vol. 4, no. 1, pp. 96–99, 2014. doi: 10.1109/JPHOTOV.2013.2282737
[5] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell,” IEEE J. Photovoltaics, vol. 4, no. 6, pp. 1433–1435, 2014. doi: 10.1109/JPHOTOV.2014.2352151
[6] A. W. Blakers, M. A. Green, S. Jiqun, E. M. Keller, S. R. Wenham, R. B. Godfrey, T. Szpitalak, and M. R. Willison, “18-Percent Efficient Terrestrial Silicon Solar Cells,” IEEE Electron Device Lett., vol. 5, no. 1, pp. 12–13, 1984. doi: 10.1109/EDL.1984.25813
[7] A. W. Blakers and M. A. Green, “20% Efficiency Silicon Solar Cells,” Appl. Phys. Lett., vol. 48, no. 3, pp. 215–217, 1986. doi: doi.org/10.1063/1.96799
[8] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% Efficient Silicon Solar Cell,” Appl. Phys. Lett., vol. 55, no. 13, pp. 1363–1365, 1989. doi: doi.org/10.1063/1.101596
[9] M. Taguchi, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano,“Improvement of the conversion efficiency of polycrystalline silicon thin film solar cell, ” in Proc. 5th International Photovoltaic Science and Engineering Conference, pp. 689–692, 1990. doi: 10.1002/0470091282.ch3
[10] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama, and O. Oota, “HITTM cells — high‐efficiency crystalline Si cells with novel structure,” Prog. Photovoltaics Res. Appl., vol. 8, no. 5, pp. 503–513, 2000. doi: 10.1002/1099-159X(200009/10)8:5<503::AID-PIP347>3.0.CO;2-G
[11] D. Adachi, J. L.Hernández, and K. Yamamoto, “Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency,” Appl. Phys. Lett., vol. 107, no. 23, pp. 105–108, 2015. doi: doi.org/10.1063/1.4937224
[12] S. W. Glunz, F. Feldmann, A. Richter, M. Bivour, C. Reichel, H. Steinkemper, J. Benick, and M. Hermle, “ The irresistible charm of a simple current flow pattern - 25% with a solar cell featuring a full-area back contact,” in Proc. European Photovoltaic Solar Energy Confer., pp. 199–200, 2015 doi: 10.4229/EUPVSEC20152015-2BP.1.1
[13] A. Richtera, J. Benicka, F. Feldmann, A. Fell, M. Hermlea, and S. W. Glunza, “n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation, ” Sol. Energy Mater. Sol. Cells, vol. 173, pp. 96–105 ,2017. doi: 10.1016/j.egypro.2012.07.002
[14] M. Taguchi, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, “Improvement of the conversion efficiency of polycrystalline silicon thin film solar cells,” in Proc. 5th International Photovoltaic Science and Engineering Conference, pp. 689–692, 1990. doi: 10.1002/0470091282.ch3
[15] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, and Y. Kuwano, “Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer),” J. Appl. Phys., vol. 31, no. 11, pp. 3518–3522, 1992. doi: 10.1143/JJAP.31.3518
[16] T. Kinoshita, D. Fujishima, A. Yano, A. Ogane, S. Tohoda, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, H. Sakata, M. Taguchi, and E. Maruyama, “The Approaches for High Efficiency HITTM Solar Cell with Very Thin (<100 µm) Silicon Wafer over 23%,” in Proc. 26th European Photovoltaic Solar Energy Conference and Exhibition, pp. 871–874, 2011. doi: 10.4229/26thEUPVSEC2011-2AO.2.6
[17] A. Das and A. Rohatgi, “The impact of cell design on light induced degradation in p-type silicon solar cells,” in Proc. 37th IEEE Photovolt. Spec. Conf., pp. 158–164, 2011. doi: 10.1109/PVSC.2011.6185869
[18] E. Cho, J.-H. Lai, Y.-W. Ok, A. D. Upadhyaya, A. Rohatgi, M. J. Binns, J. Appel, J. Guo, H. Fang, and E. A. Good, “Light-Induced Degradation Free and High Efficiency P-type Indium- Doped PERC Solar Cells on Czochralski Silicon,” in Proc. IEEE 42nd Photovolt. Spec. Conf., pp. 0–3, 2015. doi: 10.1109/PVSC.2015.7355685
[19] E. Cho, Y.-W. Ok, A. D. Upadhyaya, M. J. Binns, J. Appel, J. Guo, and A. Rohatgi, “P-Type Indium-Doped Passivated Emitter Rear Solar Cells (PERC) on Czochralski Silicon Without Light-Induced Degradation,” IEEE J. Photovoltaics, vol. 6, no. 4, pp. 795–800, 2016. doi: 10.1109/JPHOTOV.2016.2547578
[20] M. Edwardsa, S. Bowden, U. Das, and M. Burrows, “Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells,” Sol. Energy Mater. Sol. Cells, vol. 92, no. 11, pp. 1373–1377, 2008. doi: 10.1016/j.solmat.2008.05.011
[21] A. K. Chu, J. S. Wang, Z. Y. Tsai, and C. K. Lee, “A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 8, pp. 1276–1280, 2009. doi: 10.1016/j.solmat.2009.01.018
[22] O. Weiying, Z. Yao, L. Hailing, Z. Lei, Z. Chunlan, D. Hongwei, L. Min, L. Weiming, Z. Jun, and W. Wenjing, “Texturization of mono-crystalline silicon solar cells in TMAH without the addition of surfactant,” J. Semicond., vol. 31, no. 10, pp. 106002–1–106002–5, 2010. doi: 10.1088/1674-4926/31/10/106002
[23] K. Nakamura1, M. Aoki, I. Sumita, H. Sato, Y. Kumagai, Y. Kawata, and Y. Ohshita, “Texturization control for fabrication of high efficiency mono crystalline si solar cell,” in Proc. 39th Photovolt. Spec. Conf., pp. 2239–2242, 2013. doi:10.1109/PVSC.2013.6744922
[24] T. Koida, H. Sai, H. Shibata, and M. Kondo, “Trend of transparent conductive oxides for solar cells,” in Proc. 19th Int. Work. Act. Flatpanel Displays Devices - TFT Technol. FPD Mater. AM-FPD, vol. 2, no. 9, pp. 45–48, 2012. doi: 10.1016/0927-0248(95)00141-7
[25] W. Favre1, J. Coignus, N. Nguyen, R. Lachaume, R. Cabal1, and D. Muñoz1, “Influence of the transparent conductive oxide layer deposition step on electrical properties of silicon heterojunction solar cells,” Appl. Phys. Lett., vol. 102, no. 18, pp. 1–5, 2013. doi: 10.1063/1.4804985
[26] T. Desrues, H. Hamzaoui, C. Lorfeuvre, Y. Veschetti, and S. Dubois, “Evaluating the contact properties of transparent conductive oxides on crystalline silicon homojunction solar cells,” in Proc.. IEEE 43rd Photovolt. Spec. Conf., vol. 2016–Novem, pp. 1976–1979, 2016. doi: 10.1109/PVSC.2016.7749973
[27] P. Guerriero, I. Matacena, M. L. Addonizio, and S. Daliento, “Determining the optical properties of Transparent and Conductive Oxides for thin film solar cells,” in Proc. 6th Int. Conf. Clean Electr. Power Renew. Energy Resour, pp. 662–667, 2017. doi: 10.1109/ICCEP.2017.8004760
[28] S. M. Iftiquar, Y. Lee, V. A. Dao, S. Kim, and J. Yi, “High efficiency heterojunction with intrinsic thin layer solar cell : A short review,” in Proc. Mater. Process. energy Commun. Curr. Res. Technol. Dev., pp. 59–67, 2013. doi: 10.1109/PVSC.2011.6186550
[29] Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. D. Wolf, and C. Ballif, “Current Losses at the Front of Silicon Heterojunction Solar Cells,” IEEE J. Photovoltaics, vol. 2, no. 1, pp. 7–15, 2012. doi: 10.1109/JPHOTOV.2011.2174967
[30] B. Strahm, Y. Andrault, D. L. Bätzner, C. Guerin, N. Holmes, M. Kobas, D. Lachenal, B. Mendes, M. Tesfai, G. Wahli, F. Wuensch, A. Buechel, J. Mai, T. Schulze, and M. Vogt, “ Progress in Silicon Hetero-junction solar cell development and scaling for large scale mass production use,” in Proc. Materials Research Society Symposium, vol. 1245, pp. A01-04, 2010. doi: 10.1557/opl.2012.1259
[31] M. D. Lammert and R. J. Schwartz, “The Interdigitated Back Contact Solar Cell: A Silicon Solar Cell for Use in Concentrated Sunlight,” IEEE Trans. Electron Devices, vol. ED-24, no. 4, pp. 337–342, 1977. doi: 10.1109/T-ED.1977.18738
[32] R. M. Swanson, S. K. Beckwith, R. A. Crane, W. D. Eades, Y. H. Kwark, R. A. Sinton, and S. E. Swiiwiun, “Point-Contact Silicon Solar Cells,” IEEE Trans. Electron Devices, vol. 31, no. 5, pp. 661–664, 1984. doi: 10.1016/B978-185617457-2/50011-1
[33] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nat. Energy, vol. 2, no. 5, 2017. doi: 10.1038/nenergy.2017.32
[34] K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Sol. Energy Mater. Sol. Cells, vol. 173, pp. 37–42, 2017. doi: 10.1016/j.solmat.2017.06.024
[35] C. T. Sah, K. A. Yamakawa, and R. Lutwack, “Effect of Thickness on Silicon Solar Cell Efficiency,” IEEE Trans. Electron Devices, vol. 29, no. 5, pp. 903–908, 1982. doi: 10.1109/T-ED.1982.20797
[36] N. Dwivedi, S. Kumar, A. Bisht, K. Patel, and S. Sudhakar, “Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve ∼27% efficiency,” Sol. Energy, vol. 88, pp. 31–41, 2013. doi: 10.1016/j.solener.2012.11.008
[37] M. Rudiger, H. Steinkemper, M. Hermle, and S. W. Glunz, “Numerical current density loss analysis of industrially relevant crystalline silicon solar cell concepts,” IEEE J. Photovoltaics, vol. 4, no. 2, pp. 533–539, 2014. doi: 10.1109/JPHOTOV.2013.2293196
[38] L. Zhang, U. K. Das1, Z. Shu, H. Liu, R. W. Birkmire1, and S. S. Hegedus, “Experimental and simulated analysis of p a-Si:H defects on silicon heterojunction solar cells: Trade-offs between VOC and FF,” in Proc. IEEE 42nd Photovolt. Spec. Conf., pp. 1–4, 2015. doi: 10.1109/PVSC.2015.7356043
[39] R. M. Swanson, “Approaching the 29% limit efficiency of silicon solar cells,” in Proc. Conf. Rec. 31st IEEE Photovolt. Spec. Conf., pp. 889–894, 2005. doi: 10.1109/PVSC.2005.1488274
[40] A. Richter, M. Hermle, and S. W. Glunz, “Crystalline Silicon Solar Cells Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells,” IEEE J. Photovoltaics, vol. 3, no. 4, pp. 1184–1191, 2013. doi: 10.1109/JPHOTOV.2013.2270351
[41] J. Zhao, A. Wang, and M. A. Green, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates,” Prog. Photovoltaics Res. Appl., vol. 7, no. 6, pp. 471–474, 1999. doi: 10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.3.CO;2-Z
[42] P. J. Cousins, D. D. Smith, H.-C. Luan, J. Manning, T. D. Dennis, A. Waldhauer, K. E. Wilson, G. Harley, and W. P. Mulligan, “Generation 3: Improved performance at lower cost,” in Proc. IEEE 35th Photovolt. Spec. Conf., pp. 275–278, 2010. doi: 10.1109/PVSC.2010.5615850
[43] D. D. Smith, P. J. Cousins, A. Masad, A. Waldhauer, S. Westerberg, M. Johnson, X. Tu, T. Dennis, G. Harley, G. Solomon, S. Rim, M. Shepherd, S. Harrington, M. Defensor, A. Leygo, P. Tomada, J. Wu, T. Pass, L. Ann, L. Smith, N. Bergstrom, C. Nicdao, P. Tipones, and D. Vicente, “Generation III high efficiency lower cost technology: Transition to full scale manufacturing,” in Proc. IEEE 38th Photovolt. Spec. Conf., pp. 1594–1597, 2012. doi: 10.1109/PVSC.2012.6317899
[44] National Renewable Energy Laboratory (NREL), “Best research-cell efficiencies,” 2017 [Online]. Available: https://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[45] J. Rodriguez, “Bifacial solar cells – the two sides of the story,” 2015 [Online]. Available: https://www.solarchoice.net.au/blog/news/bifacial-solar-cells-the-two-sides-of-the-story-050515
[46] Silvaco, “ATLAS User’s Manual,” 2016 [Online]. Available: https://dynamic.silvaco.com/dynamicweb/jsp/downloads/DownloadManualsAction.do?req=silen-manuals&nm=atlas
[47] G. Coletti, F. Ishimura, Y. Wu, E. E. Bende, G. J. M. Janssen, B. B. van Aken, K. Hashimoto, and Y. Watabe, “23% Efficiency metal wrap through silicon heterojunction solar cells,” in Proc. IEEE 43rd Photovolt. Spec. Conf., vol. 2016–Novem, pp. 2417–2420, 2016. doi: 10.1109/PVSC.2016.7750075
[48] J.-T. Lin, C.-T. Lee, W.-H. Chen, S. W. Haga, Y.-Y. Hu, and K.-Y. Ho, “Double-Sided Symmetrical and Crossed Emitter Crystalline Silicon Solar Cells with Heterojunctions for Bifacial Applications,” IEEE J. Photovoltaics, vol. 8, no. 2, pp. 441–447, 2018. doi: 10.1109/JPHOTOV.2018.2790798
[49] I. Dirnstorfer, D. K. Simon, B. Leszczynska, and T. Mikolajick, “Silicon heterojunction metal wrap through solar cells – a 3D TCAD simulation study,” in Proc. EPJ Web Conf., vol. 79, pp. 01004–01012, 2014. doi: 10.1051/epjconf/20137901004
[50] Y. Hayashi, D. Li, A. Ogura, and Y. Ohshita, “Role of i-aSi:H layers in a Si:H/c Si heterojunction solar cells,” IEEE J. Photovoltaics, vol. 3, no. 4, pp. 1149–1155, 2013. doi: 10.1109/JPHOTOV.2013.2274616
[51] C. Schwingshackla, M. Petittaab, J. E. Wagnera, G. Belluardoc, D. Moserc, M. Castelliad, M. Zebischa, and A. Tetzlaffa, “Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation,” Energy Procedia, vol. 40, pp. 77–86, 2013. doi: 10.1016/j.egypro.2013.08.010
[52] T. C. R. Russell, R. Saive , A. Augusto, S. G. Bowden, and H. A. Atwater, “The Influence of Spectral Albedo on Bifacial Solar Cells: A Theoretical and Experimental Study,” IEEE J. Photovoltaics, vol. 7, no. 6, pp. 1611–1618, 2017. doi: 10.1109/JPHOTOV.2017.2756068
[53] M. M. Masis, E. Rucavado, R. Monnard, L. Barraud, J. Holovsk´y, M. Despeisse, M. Boccard, and C. Ballif, “Highly Conductive and Broadband Transparent Zr-doped In2O3 as Front Electrode for Solar Cells,” IEEE J. Photovoltaics, no. 99, pp. 1–6, 2018. doi: 10.1109/jphotov.2018.2851306
[54] T. Chen, F. Köhler, A. Heidt, R. Carius, and F. Finger, “Highly Transparent and Conductive p-Type Microcrystalline Silicon Carbide Window Layers for Thin Film Silicon Solar Cells,” in Proc. 39th IEEE Photovolt. Spec. Conf. ,pp. 917–920, 2013. doi: 10.1109/pvsc.2013.6744293
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code