Responsive image
博碩士論文 etd-0716102-154745 詳細資訊
Title page for etd-0716102-154745
論文名稱
Title
以溶膠-凝膠法及快速熱處理技術製備鉭酸鋰焦電薄膜紅外線感測器之研究
The Study of LiTaO3 Pyroelectric Thin Film IR Detectors Prepared by a Sol-Gel Method and Rapid Thermal Annealing Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-28
繳交日期
Date of Submission
2002-07-16
關鍵字
Keywords
鉭酸鋰、溶膠-凝膠法、快速熱處理、焦電
RTA, Pyroelectric, RTP, Sol-Gel, LiTaO3
統計
Statistics
本論文已被瀏覽 5746 次,被下載 29
The thesis/dissertation has been browsed 5746 times, has been downloaded 29 times.
中文摘要
本論文以溶膠-凝膠法及快速熱處理技術製備鉭酸鋰[LiTaO3,簡稱LT]焦電薄膜以作為紅外線感測元件之應用;以旋鍍法將薄膜沈積於Pt/SiO2/Si(100)基板上,同時選擇1,3丙二醇為溶劑以減少達到薄膜所需厚度之披覆次數,並改變升溫速率(600~3000℃/min)及熱處理溫度(500~800℃),探討不同製程參數對薄膜成長之影響,且藉由升溫速率的改變探討其對焦電紅外線感測元件響應的影響。
實驗結果顯示,薄膜中升溫速率的快慢直接影響到LT薄膜的晶粒大小、介電性、鐵電性及焦電性,隨升溫速率的增加,LT薄膜的晶粒會有變小而緻密的趨勢。在結晶特性方面,C軸排向隨著升溫速率的提高而有增強的趨勢。在電性方面,相對介電常數從28增加到45.6,介電損失從0.033增加到0.134,而矯頑電場從122 KV/cm上升到183 KV/cm,殘留極化量從7.45 mC/cm2上升到12.12 mC/cm2,焦電係數γ從9.33×10-9 C/cm2K上升到2.66×10-8 C/cm2K。另一方面,實驗結果也顯示在熱處理溫度為700℃,升溫速率為1800℃/min之LT薄膜具有最大之優值Fv及Fm,其分別為2.19×10-10 及4.01 ×10-9 Ccm/J;且隨著升溫速率的增加,將會使電壓響應在截波頻率為80 Hz時,由LT600的5496 V/W增加到LT1800的8455 V/W,比感測率在截波頻率為300 Hz時,由LT600的1.94×108 cmHz1/2/W增加到LT1800的2.38×108 cmHz1/2/W;然而當升溫速率再增加時,電壓響度和比感測率則有下降的趨勢,結果顯示兩者皆在升溫速率為1800℃/min時具有最大值,而與優值評估相符合;因此,本研究中以LT1800薄膜最適合紅外線感測元件之應用。

Abstract
The lithium tantalite [LiTaO3,abbreviated to LT] thin films were deposited on Pt/SiO2/Si substrates by spin coating with sol-gel processing and rapid thermal processing in this thesis. 1,3 propanediol was used as solvent to minimize the number of cycles of spin coating and drying processes to obtain the desired thickness of thin film. By changing the heating rate (600~3000℃/min) and the heating temperature (500~800℃), the effects of various processing parameters on the thin films growth are studied. The effects of various heating rate on the response of pyroelectric IR detector devices are studied also.
Experimental results reveal that the heating rate will influence strongly on grain size, dielectricity, ferroelectricity and pyroelectricity of LT thin films. With the increase of heating rate, the grain size of LT thin film decreases slightly, and the C-axis orientation is enhanced. The relative dielectric constant of LT thin film increases from 28 up to 45.6, the tand increases from 0.033 to 0.134, Ec increases from 122 KV/cm to 183 KV/cm, Pr increases from 7.45 mC/cm2 to 12.12 mC/cm2, and g increases from 9.33´10-9 C/cm2K up to 2.66´10-8 C/cm2K, respectively, as the heating rate increases form 600 up to 3000℃/min. In addition, the results also show that the LT thin film possesses the largest figures of merit Fv (2.19×10-10 Ccm/J) and Fm (4.01×10-9 Ccm/J) at the heating temperature of 700℃ and heating rate of 1800℃/min. The voltage responsivities (Rv) measured at 80 Hz increase from 5496 to 8455 V/W and the specific detecivities (D*) measured at 300 Hz increase from 1.94×108 to 2.38×108 cmHz1/2/W with an increase of heating rate from 600 to 1800℃/min. However, the voltage responsivity and the specific detecivity decrease with heating rate in excess of 1800℃/min. The results show that LT1800 pyroelectric thin film detector exists both the maximums of voltage responsivity and specific detecivity. Therefore, LT1800 thin film exhibits the best IR characteristics for detector material.

目次 Table of Contents
Abstract I
Content V
Figures Caption VIII
Tables Caption XIII
Chapter 1 Introduction 1

Chapter 2 Theory 4
2.1 The structure of LiTaO3 4
2.2 Ferroelectricity 4
2.3 Sol-Gel processing 5
2.4 The choice of precursor 6
2.5 Fabrication of the film 6
2.6 Pyroelectric effect 7
2.7 Pyrolelctric response 8
2.8 Sputtering 13
2.9 DC glow discharge 14

Chapter 3 Experiments 16
3.1 Properties of precursors 16
3.2 Thin film deposition 17
3.2.1 Cleaning of the substrate 17
3.2.2 Deposition of the bottom electrode 17
3.2.3 Spin-coating 18
3.2.4 Thermal processing 18
3.2.4.1 Pyrolysis 18
3.2.4.2 Annealing 19
3.3 RTA furnace 19
3.3.1 Infrared gold image furnace 19
3.3.2 Comparison of the CTA and RTA 20
3.4 XRD analysis 20
3.5 SEM analysis 20
3.6 Thickness analysis 21
3.7 SIMS (Secondary Ion Mass Spectroscopy) 21
3.8 Electrical measurements 21
3.9 Fabrication of IR detectors 21

Chapter 4 Results and discussion 23
4.1 The analysis of the solution 23
4.1.1 The composition analysis of the solution 23
4.1.2 Differential thermal analysis (DTA) and Thermogravimetric analysis (TGA) 23
4.2 The thickness analysis of the film 24
4.3 Orientation analysis of the films 24
4.3.1 The effects of annealing temperature 24
4.3.2 The effects of heating rate 24
4.4 Surface morphology analysis 25
4.4.1 The effect of the annealing temperature 25
4.4.2 The effect of the heating rate 26
4.5 SIMS analysis 26
4.6 Dielectric constant 26
4.7 Dielectric loss 27
4.8 Current-Voltage measurement 28
4.9 P-E measurement 28
4.10 Pyroelectric coefficient measurement 28
4.11 The characteristics of the thin film detectors 29
4.11.1 Voltage responsivity (RV) and Current reponsivity (RI) 30
4.11.2 The noise voltages (Vn) 31
4.11.3 The noise equivalent power (NEP) and the specific detectivity (D*) 32
Chapter 5 Conclusion 33

References 35


Figures Caption

Fig.2-1 Stereoscopic view of the lithium tantalum crystal structure.. 42

Fig.2-2 Stereoscopic view of the bonding topography around tantalum . 43

Fig.2-3 Hysteresis loop of the ferroelectric materials. 44

Fig.2-4 The schematic diagram of the spin coating process. 45

Fig.2-5 Pyroelectric effect. 46

Fig.2-6 A pyroelectric detector element. 47

Fig.2-7 A common pyroelectric detecting system. 48

Fig.2-8 Variation in voltage responsitivity RV with frequency. 49

Fig.2-9 Voltage versus current characteristic for three types of self-sustained discharges(p= 2 to 30 Pa). 50

Fig.2-10 Features of a dc glow discharge system. 51

Fig.3-1 Preparation procedure for LiTaO3 films. 52

Fig.3-2 The schematic diagram of the DC magnetron sputtering system. 53

Fig.3-3 The schematic diagram of the infrared gold image furnace. 54

Fig.3-4 The metal foil mask. 55

Fig.3-5 The single IR detector. 56

Fig.4-1 TGA-DTA curves of the LiTaO3 solutions. 57

Fig.4-2 The SEM cross section morphology of LiTaO3 film. 58

Fig.4-3 XRD results as a function of annealing temperature for LiTaO3 films. 59

Fig.4-4 XRD results as a function of heating rate for LiTaO3 films. 60

Fig.4-5 The f factor as a function of heating rate for LiTaO3 films. 61

Fig.4-6 The SEM surface morphologies of LiTaO3 films annealed at: (a) 500℃; (b) 600℃; (c) 700℃; and (d) 800℃ with heating rate of 1800℃/min.(bar=0.25μm) 62

Fig.4-7 The SEM surface morphologies of LiTaO3 films annealed at 700℃ with different heating rate of: (a) 600℃/min; (b) 1200℃/min; (c) 1800℃/min; (d) 2400℃/min; and (e) 3000℃/min.(bar=0.25μm). 63

Fig.4-8 The SIMS analysis for LiTaO3 thin film. 64

Fig.4-9 Heating rate dependence of dielectric properties for the LiTaO3 thin films 65

Fig.4-10 Heating rate dependence of leakage current density for LiTaO3 thin films 66

Fig.4-11 The Sawyer-Tower circuit. 67

Fig.4-12 Ferroelectric hysteresis loops of LiTaO3 films with different heating rate of: (a) 600℃/min; (b) 1200℃/min; (c) 1800℃/min; (d) 2400℃/min; and (e) 3000℃/min. 68

Fig.4-13 Heating rate dependence of the coercive field (Ec) and remnant polarization (Pr) for LiTaO3 thin films. 69

Fig. 4-14 The schematic diagram of the pyroelectric current measurement 70

Fig.4-15 Heating rate dependence of pyroelectric coefficient for LiTaO3 thin films. 71

Fig.4-16 Dependence of the figure of merit Fv and Fm on heating rate. 72

Fig.4-17 The schematic diagram of the IR detector measurement system. 73

Fig.4-18 Frequency dependence of the voltage responsivity (RV) and current reponsivity (RI) of the LiTaO3 thin film IR detector with heating rate of 600℃/min. 74

Fig.4-19 Frequency dependence of the voltage responsivity (RV) and current reponsivity (RI) of the LiTaO3 thin film IR detector with heating rate of 1200℃/min. 75

Fig.4-20 Frequency dependence of the voltage responsivity (RV) and current reponsivity (RI) of the LiTaO3 thin film IR detector with heating rate of 1800℃/min. 76

Fig.4-21 Frequency dependence of the voltage responsivity (RV) and current reponsivity (RI) of the LiTaO3 thin film IR detector with heating rate of 2400℃/min. 77

Fig.4-22 Frequency dependence of the voltage responsivity (RV) and current reponsivity (RI) of the LiTaO3 thin film IR detector with heating rate of 3000℃/min. 78

Fig.4-23 Dependence of the maximum voltage reponsivity on heating rate at 80Hz. 79

Fig.4-24 Frequency dependence of the noise voltage per unit bandwidth for LiTaO3 thin film IR detectors. 80

Fig.4-25 Frequency dependence of the noise equivalent power and the specific detectivity of the LiTaO3 thin film IR detector with heating rate of 600℃/min. 81

Fig.4-26 Frequency dependence of the noise equivalent power and the specific detectivity of the LiTaO3 thin film IR detector with heating rate of 1200℃/min. 82

Fig.4-27 Frequency dependence of the noise equivalent power and the specific detectivity of the LiTaO3 thin film IR detector with heating rate of 1800℃/min. 83

Fig.4-28 Frequency dependence of the noise equivalent power and the specific detectivity of the LiTaO3 thin film IR detector with heating rate of 2400℃/min. 84

Fig.4-29 Frequency dependence of the noise equivalent power and the specific detectivity of the LiTaO3 thin film IR detector with heating rate of 3000℃/min. 85

Fig.4-30 Dependence of the maximum specific detectivity on heating rate at 300Hz. 86


Tables Caption

Table 1 The DC sputtering deposition conditions. 87

Table 2 The ratios of the XRD inensities of LiTaO3 films with various heating rate. 88
參考文獻 References
References

[1] J. Zeng, M. Zhang, L. Wang and C. Lin, “Influence of lead titanate seed layer on orientation behavior and ferroelectrics of sol-gel derived PZT thin films”, J. Phys. Condens. Matter Vol.11 (1999) pp.1139-1146.
[2] Sheppard B. P., “The challenge of ceramic machining continue”, Am. Ceram. Soc. Bull. Vol.71 (1992) pp.1590.
[3] Haerting G. H., “Ferroelectric thin films for electric applications”, J. Vac. Sci. Technol. Vol.9 (1991) pp.414-420.
[4] B. Jaffe, W. R. Cook Jr. and H. Jaffe, “Piezoelectric Ceramics”, Academic Press, New York, (1971).
[5] Y. Xu, “Ferroelectric Materials and Their Applications”, Wiley, New York, (1990).
[6] K. Mizuuchi and K. Yamamoto,” 1st-Order Quasi-Phase-Matched 2nd-Harmonic Generation in a LiTaO3 Wave-Guide”, Applied Optics Vol.33 (1994) , Iss 10, pp 1812-1818.
[7] D. Kip, T. Bartholomaus, P. Garcia and E. M. Kratzig,” Anisotropic 2-Wave and 4-Wave-Mixing in Planar LiTaO3-Ti-Fe Optical Wave-Guides”, Journal of the Optical Society of America B-Optical physics, Vol.11 (1994), Iss 9, pp 1736-1742.
[8] K. Nakamura and M. Itagaki,” Pyroelectric Ir Detectors Using Periodic Inverted Domains of LiTaO3”, Jpn. J. Appl. Phys., Vol.33(9B) (1994) pp.5404-5406.
[9] K. Ito, S. Helmfrid and K. Tatsuno,” Experimental-Study on a 2nd-Harmonic Intensity Modulator with Quasi-Phase-Matched Optical Wave-Guides”, Jpn. J. Appl. Phys., Vol.33(7A) (1994) pp.3929-3933.
[10] K. Taki and Y. Shimizu,” Material Constants of LiTaO3 Determined from Surface-Acoustic-Wave Velocities”, Jpn. J. Appl. Phys., Vol.33(5B) (1994) pp.2976-2978.
[11] K. Yamamoto M. Murota and Y. Shimizu,” Characteristics of Leaky Surface-Waves Propagating on LiTaO3 Substrate”, Jpn. J. Appl. Phys., Vol.31(S31-1) (1992) pp.210-212.
[12] M. Murota and Y. Shimizu,” Elastic-Constants and Temperature Coefficients of LiTaO3 for SAW Application”, Jpn. J. Appl. Phys., Vol.30(S30-1) (1991) pp.156-158.
[13] C. Feng and P. Xu, “The detection mechanism of LiTaO3 type II pyroelectric detectors. I. The primary and secondary pyroelectric effects.”, Infrared Phys. Vol.40 (1999) pp.61.
[14] C. Feng and P. Xu, “The detection mechanism of LiTaO3 type II pyroelectric detectors. II. The tertiary pyroelectric effect.”, Infrared Phys. Vol.40 (1999) pp.71.
[15] C. Feng and P. Xu, “The detection mechanism of LiTaO3 type II pyroelectric detectors. III. The total pyroelectric effects.”, Infrared Phys, Vol.40 (1999) pp.79.
[16] A. Kandušer, D. Mandrino, M. Kosec, P. Panjan and B. B. Lavrenčič, “Characterization of Ferroelectric LiTaO3 Thin Film”, Ferroelectrics Vol.134 (1992) pp.223-228.
[17] T. N. Blanton and D. K. Chatterjee, “An X-ray diffraction study of epitaxial lithium tantalite films deposited on (0001) sapphire wafers using r.f. diode sputtering”, Thin Solid Films Vol.256 (1995) pp. 59-63.
[18] C. H. Kohli, J. Moser, K. Prasad, P. E. Schmid, F. Lévy and G. Burri, “Characterization of lithium tantalite thin films sputter-deposited onto RuO2/Si substrates”, Microelectronic Engineering Vol.29 (1995) pp. 201-204.
[19] Y. Saito and T. Shiosaki,”Heteroepitaxial Growth of LiTaO3 Single-Crystal Films by RF Magnetron Sputtering”, Jpn. J. Appl. Phys., Vol.30(9B) (1991) pp.2204-2207.
[20] Y. Shibata, N. Kuze, M. Matsui, Y. Kanno, K. Kaya, M. Ozaki, M. Kanai and T. Kawai,”Surface-Acoustic-Wave Properties of Lithium Tantalate Films Grown by Pulsed-Laser Deposition”, Jpn. J. Appl. Phys., Vol.34(9) (1994) pp.249-253.
[21] J. P. Meyn, C. Laue, R. Knappe R. Wallenstein and M. M. Fejer,” Fabrication of Periodically Poled Lithium Tantalate for UV Generation with Diode-Lasers”, Applied Physics B-Lasers and Optics, Vol.73 (2001), Iss 2, pp 111-114.
[22] Hironori Yamamoto, Sergei A. Kulinich and Kazuo Terashima, “LiNb1-xTaxO3 films prepared by thermal plasma spray CVD”, Thin Solid Films Vol.390 (2001) pp. 1-6.
[23] T. Majima, H. Yamamoto, S. A. Kulinich and K. Terashima, “Letter to the Editors: High-rate deposition of Li Nb1-xTaxO3 films by thermal plasma spray CVD”, Journal of Crystal Growth Vol.220 (2000) pp.336-340.
[24] J. Szanics, T. Okubo and M. Kakihana,”Preparation of LiTaO3 Powders at Reduced Temperatures by a Polymerized Complex Method”, Journal of Alloys and Compounds, Vol.281 (1998), Iss 2, pp 206-210.
[25] Kazuyuki Kaigawa, Tatsuo Kawaguchi, Minoru Imaeda, Hiroaki Sakai and Tsuguo Fukuda, “Crystal structure of LPE-grown LiNb1-xTaxO3 epitaxial films”, Journal of Crystal Growth Vol.191 (1998) pp.119-124.
[26] F. Gitmans, Z. Sitar and P. Günter, “Growth of tantalum oxide and lithium tantalite thin films by molecular beam epitaxy”, Vacuum Vol.46, no.8-10 (1995) pp.939-942.
[27] F. Gitmans, Z. Sitar and P. Günter, “Structure and Properties of LiTaO3 Thin Films Grown by Modified Gas Source Molecular Beam Epitaxy”, Microelectric Engineering Vol.29 (1995) pp.289-292.
[28] V. Bornand, Ph. Papet and E. Philippot, “Deposition of LiTaO3 thin films by pyrosol process”, Thin Solid Films Vol.304 (1997) pp.239-244.
[29] S. D. Cheng, Y. Zhou, C. H. Kam, X. Q. Han, W. X. Que, Y. L. Lam, Y. C. Chan, J. T. Oh and W. S. Gan, “LiTaO3 films with c-axis preferred orientation prepared on Si(111) substrate by sol-gel method”, Materials Letters Vol.44 (2000) pp.125-129.
[30] S. D. Cheng, Y. Zhou, C. H. Kam, X. Q. Han, W. X. Que, Y. L. Lam, Y. C. Chan, J. T. Oh and W. S. Gan, “C-axis oriented sol-gel derived LiNb1-xTaxO3 thin films on Si(111) substrates”, Thin Solid Films Vol.365 (2000) pp.77-81.
[31] S. D. Cheng, C. H. Kam, Y. Zhou, Y.L. Lam, Y. C. C. K. Pita and W. S. Gan,”Sol-Gel Derived Ferroelectric Thin-Films of LiTaO3 on SiO2/Si Substrate”, Ferroelectrics, Vol.232 (1999), Iss 1-4, pp 979-984.
[32] T. A. Deis, P. P. Phule, ”Preparation of oriented lithium tantalite thin films using molecularly modified tantalum(V) ethoxide and lithium acetate”, Journal f Materials Science Vol.11 (1992) pp.1353-1355.
[33] Keiichi Nashimoto, Hiroaki Moriyama and Eisuke Osakabe, “Control of Crystallinity in Sol-Gel Derived Epitaxial LiNbO3 Thin Films on Sapphire”, Jpn. J. App. Phys. Vol.35 (1996) pp.4936-4940.
[34] R. Jiménez, M. L. Calzada and J. Mendiola, ”C-axis oriented sol-gel (Pb,Ca)TiO3 ferroelectric thin films on Pt/MgO”, Thin Solid Films Vol.348 (1999) pp.253-260.
[35] X. J. Meng, J. G. Cheng, B. Li, S. L. Guo, H. J. Ye and J. H. Chu, “Low-temperature preparation of highly (111) oriented PZT thin films by a modified sol-gel technique”, Journal of Crystal Growth Vol.208 (2000) pp.541-545.
[36] X. J. Meng, J. G. Cheng, B. Li, S. L. Guo, H. J. Ye and J. H. Chu, “Dependence of texture development on thickness of single-annealed-layer in sol-gel derived PZT thin films”, Thin Solid Films Vol.368 (2000) pp.22-25.
[37] Jinrong Cheng and Zhongyan Meng, “Thickness-dependent microstructures and electrical properties of PZT films derived from sol-gel process”, Thin Solid Films Vol.385 (2001) pp.5-10.
[38] Xiaorong Fu, Jinhua Li, Zhitang Song and Chenglu Lin, “Growth of highly (100)-oriented Zr-rich PZT thin films on Pt/Ti/SiO2/Si substrate by a simple sol-gel process”, Journal of Crystal Growth Vol.220 (2000) pp.82-87.
[39] E. B. Araújo and J. A. Eiras, “PZT thin films produced by oxide precursors and crystallized by conventional and RTA process”, Journal of the European Ceramic Society Vol.21 (2001) pp.1513-1516.
[40] Xiangjian Meng, Jiangong Cheng, Hongjuan Ye and Junhao Chu, “Characterization of the crystallization behaviors in the PbTiO3 thin films on Si substrates by an infrared spectroscopy technique”, Infrared Physics & Technology Vol.41 (2000) pp.47-50.
[41] M. L. Calzada, A. González, R. Jiménez, C. Alemany and J. Mendiola, “Rapid thermal processing of strontium bismuth tantalite ferroelectric thin films prepared by a novel chemical solution deposition method”, Journal of the European Ceramic Society Vol.21 (2001) pp.1517-1520.
[42] R. Jiménez, M. L. Calzada and J. Mendiola, “Conditioning effects on RTP(Pb,Ca)TiO3 thin films”, Thin Solid Films Vol.335 (1998) pp.292-298.
[43] Andreas Seifert, Paul Muralt and Nava Setter, “High figure-of-merit porous Pb1-xCaxTiO3 thin films for pyroelectric applications”, Applied Physics Letters, Vol.72 (1998) pp.2409-2411.
[44] D. Xue, K. Betzler and H. Hesse, “Dielectric properties of lithium niobate—antalate crystals”, Solid State Communications Vol.115 (2000) pp.581-585.
[45] 李雅明,”固態電子學”,全華科技圖書股份有限公司,(1995) pp.168-170.
[46] T. Mitsui, I. Tatsuzaki and E. Nakamura, “An Introduction to the Physics of Ferroelectrics”, Gordor and Breach Science Publishers, pp.2.
[47] A. J. Moulson and J. M. Herbert, “ELECTROCERAMICS Materials.Properties.Applications”, Chapman & Hall, (1990).
[48] M. Ali Omar, “Elementary Solid State Physics”, Addison Wesley, (1975).
[49] M. A. Aegerter, M. Jafelicci Jr, D. F. Souza and E. D. Zanotto, “SOL-GEL SCIENCE and TECHNOLOGY”, World Scientific, Singapore (1989).
[50] B.Jirgensons and M. E. Straumains, “Colid Chemistry”, MvMillan Co., NewYork (1962).
[51] M. Lourdes Calzada, Rafael Sirera, Francisco Carmona and Basilio Jiménez, “Investigations of a Diol-based Sol-Gel Proces for the Preparation of Lead Titanate Materials”, J. Am. Ceram. Soc. Vol.78 (1995) pp.1802-1808.
[52] Nicolas J. Phillips, Maria L. Calzada and Steven J. Milne, “Sol-gel-derived lead titanate films”, Journal of Non-Crystalline Solids 147&148(1992) pp.285-290.
[53] Y. L. Tu and S. J. Milne, “A study of the effects of process variables on the properties of PZT films produced by a single-layer sol-gel technique”, J. Mater. Sci. Vol.30 (1995) pp.2507-2516.
[54] 吳朗,”電子陶瓷入門”,全欣資訊圖書股份有限公司,(1992) pp.159-161.
[55] R. W. Whatmore, “Pyroelectric devices and materials”, Rep. Prog. Phys. Vol.49 (1986) pp.1335.
[56] M. Kohli, C. Wuethrich, K. Brooks, B. Willing, M. Foster, P. Muralt, N. Setter and P. Ryser, “Pyroelectric thin-film sensor array”, Sensors and Actuators A, Vol.60 (1997) pp.147-153.
[57] 賴耿陽,”紅外線工學基礎應用”,台灣復文興業股份有限公司,(1991) pp.127-128, pp.150.
[58] R. C. Jones, Proc. Inst. Radio. Vol.47 (1959) pp.1495.
[59] 莊達人,”VLSI 製造技術”,高立圖書有限公司,(1995) pp.160-162.
[60] 施敏 著,張俊彥 譯,”半導體元件之物理與技術”,儒林圖書有限公司,(1990) pp.425.
[61] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”, Van Nostrand Reinhold, (1980) pp.201.
[62] R. Behrisch and K. Wittmaack, “Sputtering by Particle Bombardment III”, Springer-Verlag, Berlin Heidelberg, (1991) pp. 343-345.
[63] 江旭臻,Chemistry (The Chinese Chem. Soc., Taiwan China), Vol.48 (1990) pp.50-57.
[64] H. Diamant, K. Drenck and R. Pepinsky, “Bridge for accurate measurement of ferroelectric hysteresis”, The Review of Scientific Instruments, Vol.28 (1957) pp.30-33.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.5.183
論文開放下載的時間是 校外不公開

Your IP address is 3.15.5.183
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code