Responsive image
博碩士論文 etd-0716102-204545 詳細資訊
Title page for etd-0716102-204545
論文名稱
Title
二價錳離子對耐輻射奇異球菌蛋白體表現的影響
Effects of manganese on the proteomic expression in Deinococcus radiodurans
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
215
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-27
繳交日期
Date of Submission
2002-07-16
關鍵字
Keywords
耐輻射奇異球菌
Deinococcus radiodurans
統計
Statistics
本論文已被瀏覽 5685 次,被下載 973
The thesis/dissertation has been browsed 5685 times, has been downloaded 973 times.
中文摘要
二價錳離子(Mn2+)會誘導耐輻射奇異球菌(Deinococcus radiodurans) 細胞再次分裂,產生二次生長,此現象稱為Mn-CD (Mn-induced Cell Division) 效應,而此加錳離子誘導後之新生細胞,體積較母細胞小,其抗輻射能力較母細胞差、且紅色色素生成量也少很多;而其他一些與抗氧化有關的酵素,例如超氧離子歧化酉每(superoxide dismutase)及觸酉每(catalase)的活性則有增加的情形。而其他二價金屬離子則無法造成Mn-CD效應。本研究是利用二維蛋白質電泳(2-D Electrophoresis)的方式與Matrix Assisted Laser Desorption Ionization (MALDI) MASS分析法,來分析本菌在有或無錳離子培養下,其菌體內基因表現出的蛋白質種類與數量的差異。結果發現在添加錳離子培養的菌體有明顯被抑制的蛋白質為ribosomal protein L20、L35、L34、chain 3 of the large ribosomal subunit、preprotein translocase (SecE subunit)以及三種hypothetical proteins (DR1423、DR1897、一基因編號未知)。ribosomal protein與菌體內蛋白質的合成有直接相關性,顯示錳離子可能影響細胞蛋白質的合成。此外,加入錳離子培養的菌體亦會誘發acetyl-CoA acetyltransferase、transcriptional regulator (TetR family)、phosphinothricin acetyltransferase,以及三種hypothetical proteins (DR0214、DR0296、DRA0100)的表現,但這些hypothetical proteins的功能還未知。這些現象證明了錳離子確實可誘導本株細菌產生不同程度的蛋白體表現,以及利用這些表現出來的蛋白質來進行不同的生理代謝途徑。


Abstract
The addition of Mn2+ to stationary phase culture of Deinococcus radiodurans could induce further cell division. This type of cell division termed "Mn-induced Cell Division (Mn-CD)". The Mn-CD cells were less resistant to radiation, having smaller cell size, and forming less red-pigment. However, the activities of antioxidation enzymes such as superoxide dismutase (SOD) and catalase, were increased. No other divalent metal ions could cause Mn-CD. In this study, 2-D electrophoresis and Matrix Assisted Laser Desorption Ionization (MALDI) MASS were used to analyze the proteomic differences between Mn-CD and normal uninduced cells. The results showed that the expression of ribosomal proteins L20, L34, L35, chain 3 of the large ribosomal subunit, preprotein translocase (SecE subunit) and three hypothetical proteins (DR1423, DR1897 and one unidentified gene product), were pressed significantly in the cell culture when Mn2+ were added. Since these ribosomal proteins are responsible for the synthesis of protein, it is clear that Mn2+ could disturb the proteins synthesis in this bacterium. The addition of Mn2+could also induce the expression of acetyl-CoA acetyltransferase, transcriptional regulator (TetR family), phosphinothricin acetyltransferase and three hypothetical proteins (DR0214, DR0296 and DRA0100). The functions of these hypothetical proteins were not known yet. In conclusion, it is true that Mn2+ could alter the proteomic expression and some metabolic pathways in D. radiodurans.


目次 Table of Contents
中文摘要………………………………………………..…………I
英文摘要…………………………………………………………..II
表目錄……………………………………………………………..III
圖目錄……………………………………………………………...V
壹、 前言………………………………………………………..1
貳、 材料方法…………………………………………………..25
參、 結果…………………………………………………………33
肆、 討論…………………………………………………………39
伍、 參考文獻……………………………………………………45
陸、 圖表…………………………………………………………58
參考文獻 References
李孟芝, 1999. 耐輻射奇異球菌果糖雙磷酸醛縮酉每之特性探討與部分純化。國立中山大學碩士論文。

李梅菁, 2001. 以基質輔助雷射脫附游離飛行時間質譜法分析血液中微量成分組成。國立中山大學碩士論文。

陳君麟, 2000. 探討各種單醣與雙醣對耐輻射奇異球菌生長的影響。國立中山大學碩士論文。

陳麗瑛, 1995. 二價錳離子對抗輻射奇異球菌醣類代謝的影響。國立中山大學碩士論文。

黃威球,1997.耐輻射奇異球菌的醣類代謝。國立中山大學碩士論文。

薛雅兆, 2000. 錳離子對耐輻射奇異球菌葡萄糖代謝路徑走向的影響。國立中山大學碩士論文。

Anderson, A. W., H. C. Nordan, R. F. Cain, G. Parrish, and D. Duggan. 1956. Studies on a radio-resistant Micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to γ–radiation. Food Technol. 10: 575-577.

Baeker, R., S. Haebel, K. Schlatterer, and B. Schlatterer. 2002. Lipocalin-type prostaglandin D synthase in milk: a new biomarker for bovine mastitis. Prostaglandins & other Lipid Mediators 67: 75-88.

Bahr, U., M. Karas, F. Hillenkamp, and J. Fresenius. 1994. Analysis of biopolymers by Matrix-Assistewd Laser Desorption/ Ioniaztion Mass-Spectrometry. Anal. Chem. 66: 783-794.

Barbar, M., R. S. Bordoli, G. J. Elliott, R. D. Sedgwick, and A. N. TyLer. 1981.Fast atom bombardment mass spectrometry of bleomycin A2 and B2 and their metal complexes. Biochem Biophys Res Commun. 101: 632-638.

Battista, J. R. 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu. Rev. Microbiol. 51: 203-224.

Battista, J. R., A. M. Earl, and M.-J. Park. 1999. Why is Deinococcus radiodurans so resistant to ionizing radiation.Trends Microbiol. 7: 362-365.

Baumeister, W., M. Barth, R. Hegerl, R. Guckenberger, M. Hahn, and W. O. Saxton. 1986. Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. J. Mol. Biol. 187: 241-250.

Blanchette, R. A. 1984. Manganese accumulation in wood decayed by white-rot fungi. Phytopathology 74: 725-730.

Brim, H., S. C. McFarlan, J. K. Fredrickson, K. W. Minton, M. Zhai, L. P. Wackett, and M. J. Daly. 2000. Engineering Deinococcus radiodurans.for metal remediation in radioactive mixed waste environments. Nat Biotechnol.18: 85-90.

Brooks, B. W. and R. G. E. Murray. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation resistant cocci: Deinococcaceae fam. Nov. and Deinococcus gen. Nov., including five species. Int. J. Syst. Bacteriol. 31: 353-360.

Carbonneau, M. A., A. M. Melin, A. Perromat, and M. Clere. 1989. The action of free radicals on Deinococcus radiodurans carotenoids. Arch. Biochem. Biophys. 275: 224-251.

Chan, W. F. and D. K. O’Toole. 1999. Isolation of Deinococcus species from commercial oyster extract. Appl. Environ. Microbiol. 65: 846-848.

Chou, F. I. and S. T. Tan. 1990. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J. Bacteriol. 172: 2029-2035.

Cotter, R. 1988. Plasma desorption mass spect-rometry: coming of age. Anal. Chem.60: 781A-193A.

Counsell, T. J. and R. G. E. Murray. 1986. Polar lipid profiles of the genus Deinococcus. Int. J. Syst. Bacteriol. 36: 202-206.

Daly, M. J., L. Ouyang, P. Fuchs, and K. W. Wintonm. 1994. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radioation-resistant bacterium Deinococcus radiodurans. J. Bacteriol. 176: 3508-3517.

Daly, M. J. 2000. Engineering radiation-resistant bacteria for environmental biotechnology. Curr. Opin. Biotechnol. 11: 280-285.

Davis, N. S., G. J. Silverman, and E. B. Masurovsky. 1963. Radiation resistant, pigmented coccus isolated from haddock tissue. J. Bacteriol. 86: 294-298.

Duffes, F., P. Jenoe, and P. Boyaval. 2000. Use of two-dimensional electrophoresis to study differential protein expression in divercin V41-resistant and wild-type strains of Listeria monocytogenes. Appl. Environ. Microbiol. 66: 4318-4324.

Ehring, H., M. Karas, F. Hillenkamp. 1992. Role of photoionization and photochemistry in ionization processes of organic-molecules and relevance for matrix-assisted laser desorption ionization mass-spectrometry. Org. Mass. Spectrom. 27: 472.

Evans, D. M. and B. E. B. Moseley. 1985. Identification and initial characterization of a pyrimidine dimmer UV endonuclease( UV endonuclease β) from Deinococcus radiodurans, a DNA-repair enzyme that require manganese ions. Mutat. Res. 145: 119-128.
Eynde, H. V., Y. V. Peer, H. Vandenabeele, M. V. Bogaert, and R. D. Wachter. 1990 5S rRNA sequences of myxobacteria and radioresistant bacteria and implications for eubacterial evolution. Int. J. Syst. Bacteriol. 40: 399-404..

Fitzgerald, M. C., G. R. Parr, and L. M. Smith. 1993. Basic matrices for Matrix-Assisted Laser Desorptiom/ Ionization Mass Spectrometry of protein oligonucleotides. Anal. Chem. 65: 3204-3215.

Fox, C. F. and S. B. Wesis. 1964. Enzymatic synthesis of ribonucleic acid. II. Properties of the DNA-primed reaction with Micrococcus lysodekticus RNA polymerase. J. Biol. Chem. 239: 175-185.

Frederique, D., P. Jenoe, and P. Boyaval. 2000. Use of two-dimensional electrophoresis to study differential protein expression in divercin V41-resistant and wild-type strains of Listeria monocytogenes. Applied and Environmental Microbiology. 66: 4318-4324.

Glenn, J. K., L. Akileswaran, and M. H. Gold. 1986. Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaerte chrysosporium. Arch. Biochem. Biophys. 251: 688-696.

Gutman, P. D., H. Yao, and K. W. Minton. 1991 Partial complementation of the UV sensitivity of Deinococcus radiodurans. excision repair mutants by the cloned denV gene of bacteriophage T4. Mutat. Res. 254: 207-215.

Gutman, P. D., P. Fuchs, L. Ouyang, and K. W. Minton. 1993. Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans. J. Bacteriol. 239: 3581-3590.

Harada, K., T. Sugahara, T Ohnishi, Y. Ozaki, Y. Obuya, S. Miki, T. Miki, M. Imamura, Y. Kobayashi, H. Watanabe, M. Akashi, Y. Furusawa, .N. Mizuma, H. Yamanska, E. Ohashi, C. Yamaoka, M. Fukui, T. Nakano, S. Takahashi, T. Amano, K. Sekikawa, K. Yanagawa, and S. Nagaoka. 1998. Inhibition in a microgravity environment of the recovery of Escherichia coli cells damaged by heavy ion beams during the NASDA ISS phase I program of NASA Shuttle/Mir mission no. 6. Int. J. Mol. Med. 1: 817-822.

Herbert, B., M. Galvani, M. Hamadan, E. Olivieri, J. MacCarthy, S. Pedersen, and P. G. Righetti. 2001. Reduction and alkylation of proteins in preparation of two-dimensional map analysid: Why, when, and how? Electrophoresis. 22: 2046-2057.

Hillenkamp, F., M. Karas, R. C. Beavis, and B. T. Chait. 1991.Matrix-Assisted Laser Desorption / Ionization Mass Spectrometry of biopolymers. Anal. Chem. 63: 1193A-1201A.

Iwafune, Y., H. Kawasaki, and H. Hirano. 2002. Electrophoretic analysis of phosphorylation of the yeast 20S proteasome. Electrophoresis. 23: 329-338.

Joubert, R., J-M strub, S. Zugmeyer, D. Kobi, N. Carte, A. V. Dorsselaer, H. Boucherie, and L. Jaquet-Gutfreund. 2001. Identification by mass spectrometry of two-dimensional gel electrophoresis-separated proteins extracted from lager brewing yeast. Electrophoresis. 22: 2969-2982.

Juan, J. Y., S. N. Keeney, and E. M. Gregory. 1991. Reconstitution of the Deinococcus radiodurans aposuperoxide dismutase. Arch. Biochem. Biophys. 286: 257-263.

Juhasz, P., C. E.Costello, and K. biemann. 1993. Mateix-Assisted Laser Desorption Ionization Mass-Spectrometry with 2-(4-Hydroxy-phenyl-azo) benzoic acid matrix. J., Am. Soc. Mass Spectrom. 4: 399-411.

Julio, E. C. and P. Gromov. 1999. 2D protein electrophoresis: can it be perfected? Current Opinion in Biotechnology. 10: 16-21.

Jungblut, P. R., A. Otto, J. Favor, M. Löwe, E.-C. Müller, M. Kastner, K. Sperling, L. Klose. 1998. Identification of mouse crystallins in 2D protein patterns by sequencing and mass spectrometry. Application to cataract mutants. FEBS Letters 435: 131-137.

Kaji, H., T. Tsuji, K. G. Mawuenyega, A. Wakamiya, M. Taoka, and T. Isobe. 2000. Profiling of Caenorhabditis elegans proteins using two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis. 21: 1755-1765.

Kara, M., D. Bachmann, and F. Hillenkamp. 1985. Influence of the wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of organic molecules. Anal. Chem. 57: 2935-2945.

Kara, M. and F. Hillenkamp. 1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 60: 2299-2301.

Kepkay, P. E., D. J. Burdige, and K. H. Nealson. 1984. Kinetics of bacterial manganese binding and oxidation in the chemostat. Geomicrobiol. J. 3: 245-262.

Kepkay, P. E. and K. H. Nealson. 1987. Growth of a manganese oxidizing Pseudomonas sp. in the continuous culture. Arch. Microbiol. 148: 63-67.

Kirk, T. K. and R. L. Farrell. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41: 465-505.

Kitayama, S. 1982. Adaptive repair of cross-links in DNA of Micrococcus radiodurans. Biochim. Biophys. Acta 697: 381-384.

Klose, J. 1975. protein mapping by combined isoelectric focusing and electrophoresis of mouse tissue, a novel approach th testing for induced point mutation in mammals. Humangenetik. 26:231-243.

Kobatake, M., S. Tanabe, and S. Hasegawa. 1973. New Micrococcus radioresistant red pigment, isolated from Lama glama feces, and its use as microbiological indicator of radiosterilization. C. R. Seances Soc. Biol. Fil. 167: 1506-1510.

Lange, C. C., L. P. Wackett, K. W. Minton, and M. J. Daly. 1998. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol.16: 929-933.

Larsen, H. 1973. The halobacteria’s confusion to biology. Antonie von Leewenhoek J. Microbiol. Serol. 38: 383-396.

Leibowitz, P. J., L. S. Schwartzberg, and A. K. Bruce. 1976. The in vivo association of manganes with the chromosome of Micrococcus radiodurans. Photochem. Photobiol. 23: 45-50.

Lewis, N. F. 1973. Radio resistant Micrococcus radiophilus sp. nov. isolated for irradiated Bombay duck (Harpodon nehereus). Curr. Sci. 42: 504.

Li, G., M. Waitham, N. L. Anderson, E. Unsworth, A. Treston, and J. N. Weinstein. 1997. Rapid mass spectrometric identification of proteins from two-dimensional polyacrylamide gels after in gel proteolytic digestion. Electrophoresis. 18: 391-402.

Lin, J., R. Qi, C. Aston, J. Jing, T. S. Anantharaman, B. Mishra, O. White, M. J. Daly, K. W. Minyon, J. C. Venter, and D. C. Schwartz. 1999. Whole-genome shotgun optical mapping of Deinococcus radiodurans. Science. 285: 1558-1562.

Lopez, M. F., K. Berggren, E. Chernokalskaya, M. Robinson, and W. F. Patton. 2000. A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis. 21: 3673-3683.

Lutz, K. A., K. A. Knapp, P. Maliga. 2001. Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol. 125: 1585-1590.

Makarova, K. S., L. Aravind , Y. I. Wolf, R. L. Tatusov, K. W. Minton, K. W. Koonin, E. V., and M. J. Daly. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Molecular Biol. Rev. 65: 44-79.

Masters, C. I., R. G. Murray, B. E. Moseley, and K. W. Minton. 1991. DNA polymorphisms in new isolates of “Deinococcus radiodurans”. J. Gen. Microbiol. 137: 1459-1469.

Mattimore, V. and J. R. Battista. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178: 633-637.

Muller, D. J., W. Baumeister, and A. Engel. 1996. Conformational change of the hexagonally packed intermediation layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178: 3025-3030.

Munson, M. S. B. and F. H. Field. 1960. Chemical ionization mass spectrometry. J. Am. Chem. Soc. 88: 2621-2625.

Murray, R. G. E. 1986. Genus 1. Deinococcus Brooks and Murray 1981. In Berhey’s Muanual of Systematic Bacteriology, ed. P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt, 2: 1035-1043. Williams & Wilkins. Baltimore.

Murray, R. G. E. 1992. In the Prokaryotes. Vol. 4, 2nded. Balows, A., H. G. Turper, M. Dworkin, W. Harder, and K. H. Schleifer. (eds). Springer-Verlag. New York. p.3732-3744.

Nier, A. O. 1947. Electron impact mass spectrometry. Rev Sci Instrum. 18: 415-420.

Nelson, R. W., D. Dogruel, and P. Williams. 1994. Mass determination of human immunoglobulin IgM using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commum. Mass Spectrometry 8:627-639.

O’Farrel, P. H. 1975.High resolution two-dimensional electrophoresis of protein. J. Biol. Chem. 250: 4007-4021.

Oka, T., K. Udagawa, and S. Kinoshita. 1968. Unbalanced growth death due to depletion of Mn(II) in Brevibacterium ammoniagenes. J. Bacteriol. 96: 1760-1767.

Pachuta, S. J. and R. G. Cooks.1987. Mechanisms in molecular SIMS. 87: 647-651.

Peters, J. and W. Baumeister. 1986. Molecular cloning, expression, and characteruzation of the gene for the surface (HPI)-layer protein of Deinococcus radiodurans in Escherichia coli. J. Bacteriol. 167: 1048-1054.

Petersen, D. J. and G. N. Bennett. 1991. Cloning of the Clostridium acetobutylicum ATCC 824 acetyl coenzyme A acetyltransferase (thiolase; EC 2.3.1.9) gene. Appl Environ Microbiol. 57: 2735-2741.

Piubelli, C., M. Galvani, M. Hamdan, E. Domenici, and P. G. Righetti. 2002. Proteome analysis of rat polymorphonuclear leukocytes: A two-dimensional electrophoresis/mass spectrometry approach. Electrophoresis. 23: 298-310.

Porubleva, L., K. V. Velden, S. Kothari, D. J. Oliver, and P. R. Chitnis. 2001. The proteome of maize leaves: Use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis. 22: 1724-1738.

Posthumus, M. A., P. G. Kistemker, H. L. C. Meuzelaar, and M. C. Brauw. 1978. Laser desorption mass spectrometry of polar nonvolatile Bio-Orangic Molecules. Anal. Chem. 50: 985-992.

Rainey, F. A., M. F. Nobre, P. Shumann, E. Stackrbrandt, and M. S. da Costa. 1997. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence copmparison. Int. J. Syst. Bacteriol. 47: 510-514.

Raj, H. D., F. L. Duryee, A. M. Deeney, C. H. Wang, A. W. Anderson, and P. R. Elliker. 1960. Utilization of carbohydrates and amino acid by Micrococcus radiodurans. Can. J. Microbiol. 6: 289-298.

Ratliff, M., W. Zhu, R. Deshmukh, A. Wilks, I. Stojiljkovic. 2001. Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J Bacteriol. 183(21): 6394-6403.

Romano, A. H., S. J. Eberhard, S. L. Dingle, and T. D. McDowell. 1970. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria. J. Bacteriol. 104: 808-813.

Romano, A. H., J. D. Trifone, and M. Brustolom. 1979. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in fermentative bacteria. J. Bacteriol. 139: 93-97.

Salzberg, S. L., Salzberg, A. J. Salzberg, A. R. Kerlavage, T. Jean- Francois. 1998. Skewed oligomers and origins of replication. Gene. 217: 57-67.

Shapiro, A., D. DiLello, M. C. Loudis, D. E. Keller, and S. H. Hutner. 1977 Minimal requirement in defined media for improved growth of some radio-resistant pink tetracocci. Appl. Env. Microbiol. 33: 1129-1133.

Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass Spectrometric sequencing of proteins from sliver-stained polyacrylamide gels. Anal. Chem. 68: 850-858.

Smith, R. D., L. Pasa-Tolic, M. S. Lipton, P. K. Jensen, G. A. Anderson, Y. Shen,T. P. Conrads, H. R. Udseth, R. Harkewicz, M. E. Belov, C. Masselon, and T. D. Veenstra. 2001. Rapid quantitative measurements of proteomes by Fourier transform ion cyclotron resonance mass spectrometry. Electrophoresis. 22: 1652-1668.

Stephen, F. A., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 25: 3389-3402.

Stevens, A. and J. Henry. 1964. Studies of the RNA polymerase from E. coli. J. Biol. Chem. 239: 196-203.

Swaving, J., K. H. Wely, A. J. Driessen. 1999.Preprotein translocation by a hybrid translocase composed of Escherichia coli and Bacillus subtilis subunits. : J Bacteriol. 181: 7021-7027.

Sweet, D. M. and B. E. B. Moseley. 1974. Accurate repair of ultraviolet-induced damage in Micrococcus radiodurans. Mutat. Res.23: 311-318.

Sweet, D. M. and B. E. B. Moseley. 1976. The resistance of Micrococcus radiodurans to Killing and mutation by agents which damage DNA. Mutat. Res. 34: 175-186.

Tabet, J. C. and R. J. Cotter. 1984. Laser desorption Time-of-Fight mass spectrometry of high mass molecules. Anal. Chem. 56: 162-175.

Tanaka, A., H. Hirano, M. Kikuchi, S. Kitayama, and H. Watanabe. 1996. Changes in cellular proteins of Deinococcus radiodurans following γ-irradiation. Radiat Environ Biophys 35: 95-99.

Tanaka, K., H. Waki, Y. Ido, S. Akita, Y. Yoshida, and T. Yoshida. 1988. Protein and polymer analysis up to 100000 by laser ionizatiuon Time-of- Flight mass spectrometry. Rapid Commum. Mass. Spectrom. 2: 151-165.
Thebault, S., D. Gilbert, N. Machour, L. Marvin, C. Lange, F. Tron, and R. Charlionet. 2000. Two-dimensional electrophoresis and mass spectrometry identification of proteins bound by a murine monoclonal anti-cardiolipin antibody:A powerful technique to characterize the cross-reactivity of a single autoantibody. Electrophoresis. 21: 2531-2539.

T’so, P. O. P., J. Bonner, and J. Vinograd. 1958. Structure and properties of microsomsal nucleroprotein particles from pea seedlings. Biochem. Biophys. Acta 30: 570-582.

Van Breemen, R. B., M. Snow, and R. J. Cotter. 1983. Time-resolved laser desorption mass spectrometry 1 desorption of performed ions. Int. J. Mass. 49: 35.

Van den Eynde, H., Y. Van de Peer, H. Vandenabeele, M. Van Bogaert, and R. de Wachter. 1990. 5S rRNA sequences of myxobacteria and radioresistant bacteria and implications for eubacterial evolution. Int J. Syst, Bacteriol. 40: 399-404

Westermeier, R. 1993. Electcrophoresis in Practice. 1th ed. VCH.

White, O., J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, D. H. Haft, M. L. Gwinn, W. C. Nelson, D. L. Richardson, K. S. Moffat, H. Q. Lingxia Jiang, W. Pamphile, M. Crosby, M. Shen, J. J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K. S. Makarova, L. Aravind, M. J. Daly, K. W. Minton, R. D. Fleischmann, K. A. Ketchum, K. E. Nelson, S. Salzberg, H. O. Smith, J. C. Venter, and C. M. Fraser. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 286: 1571-1577.

Wierowski, J. V. and A. K. Bruce. 1980. Modification of radiation resistance by manganeses in Micrococcus radiodurans. Radiat Res. 83: 384-385.

Woese, C. R., E. Stackebrandt, T. J. Macke, and G. E. Fox. 1985. A phylogenetic definition of the major eubacterial taxa. System. Appl. Microbiol. 6: 143-151.

Work, E. and H. Griffiths. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95: 641-657.

Yamashita, M. and J. B. Fenn. 1984. Electrospray ion source: anther variation on the Tree-Jet Tjeme. J. Phys. Chem. 88: 4451-4460.

Zhang, Y. 1997. Manganese dependent glycolysis of the extremely radioresistant bacterium Deinococcus radiodurans. M. S. Thesis. The University of Memphis. U.S.A.

Zhang, Y. M., T. Y. Wong, L. Y. Chen, C. S. Lin, and J. K. Liu. 2000. Induction of a futile Embden-Meyerhof-Parnas pathway in Deinococcus radiodurans by Mn: possible role of the pentose phosphate pathway in cell survival. Applied and Environmental Microbiology. 66: 105-112.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code