Responsive image
博碩士論文 etd-0716103-120549 詳細資訊
Title page for etd-0716103-120549
論文名稱
Title
以鐵、鉬、碳銲覆合金化塗層做表面改質之凝固組織微結構研究
none
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-26
繳交日期
Date of Submission
2003-07-16
關鍵字
Keywords
相鑑定、抗磨耗、表面改質、微組織
phase identify, surface modificaiton, microstructure
統計
Statistics
本論文已被瀏覽 5628 次,被下載 11
The thesis/dissertation has been browsed 5628 times, has been downloaded 11 times.
中文摘要
本研究是以鎢極惰氣遮護電弧銲覆方式,將預混摻之鐵、鉬金屬粉末及碳粉末,銲覆於SC45 中碳鋼基材上。由先前實驗室的研究結果得知,高溫450℃下進行磨耗測試,其環對盤滑動摩擦係數約0.3,每百萬牛頓-米之耗損量為0.67 毫克,得到了較基材甚佳的硬度及抗磨耗性質。藉由X 光繞射、金相組織觀察、電子微探針掃瞄儀、穿透式電子顯微鏡的分析比對銲覆層凝固組織,並利用電子繞射來鑑定各相成分的分佈行為。
實驗結果顯示:經鎢極惰氣遮護電弧銲覆後之銲覆層,是以枝狀晶為主的共晶凝固組織。X 組試樣中,β-Mo2C 乃是位於未熔融鉬顆粒旁形成的樹枝狀;γ 相(分散相)是以圓柱的形狀凝固在樹枝晶中;而η-Fe3Mo3C(連續相)則是在樹枝晶內的圓柱間凝固下來。Z 組試樣中,η-Fe3Mo3C 首先凝固成枝狀晶,接著才是γ 相在枝間晶部位凝固。凝固路徑為:α + L → α + γ + L → α + γ + L+ η → γ + η。
γ 相及η-Fe3Mo3C,均為面心立方結構,呈有序排列,晶格一致性良好,且二者具有完美的晶向關係。
Abstract
This research is based on “GTAW” mode, toweld the premixedferrite, molybdenum, and carbon powders on SC45 carbon steel substrate.
Learning from the previous experiments, a wear test under a high temperature of 450℃, was employed to get the Ring-disk coefficients of
sliding friction about 0.3, the depletion amounts to 0.67 mg Nm per million, that exhibited a better hardness and anti-wear property than the
substrate.
The welding layer’s solidification structure was examined by XRD,SEM, EPMA and TEM.
The experimental results revealed that in the layer welded with GTAW, primary dendritic arms are of eutectic solidification structures.
In X sample, β-Mo2C is located in the dendrite closed to the un-melted zone. We can see that γ phase (dispersed phase) with the rod shape solidified in the dendrite. And then η-Fe3Mo3C (continuous phase) solidified between the rod spacing.
In Z sample, η-Fe3Mo3C solidified as dendrite first, and then the γ phase solidified between the inter-dendrite. The solidification path is “α + L → α + γ + L → α + γ + L+ η → γ + η”.
γ phase and η-Fe3Mo3C are both FCC structures in an ordered phase, and the coherence of lattice is good, with a perfect orientation
relationship.
目次 Table of Contents
目錄
1.1 研究背景………………………………………………………...1
1.2 研究動機與目的………………………………………………...5
2.1 鉬對銲覆層組織和性質的影響………………………...………7
2.2 銲覆後的麻田散鐵變態對銲覆層組織和性質的影響………...8
2.3 凝固組織對銲覆層組織和性質的影響……………………….10
3.1 實驗材料及處理……………………………………….............12
3.2 氬銲銲覆處理………………………………………………….12
3.3 X 光繞射實驗…………………………………………………..13
3.4 金相實驗……………………………………………………….13
3.5 電子微探儀觀察…………………...…………………..………13
3.6 電子顯微鏡試片的製備……………………………………….14
3.7 穿透式電子顯微鏡觀察…………………...…………………..14
3.8 實驗流程圖………………………………………………….....15
4.1 X 光繞射分析………………………….…………….…………16
4.2 金相組織觀察………………………………….………………17
4.3 微結構觀察………………………………………………….....20
伍. 結論………………………………………………………………...24
陸. 參考文獻…………………………………………………………...26
柒. 表………………………………………………………...................29
捌. 圖…………………………………………………………………...32
玖. 附錄…………………………………………………………….......71
表目錄
表1 銲接方式的特性比較………………………………………......29
表2 碳化鉬的種類及堆疊方式……………………………………..29
表3 樹突之生長方向和晶體構造之關係…………………………..30
表4 各組預塗佈層含有Mo、C、Fe 重量與其莫爾百分比…………30
表5 經銲覆後各組生成成份及硬度表……………………………..30
表6 X 組中以EPMA做WDS定量所得之結果……………………31
表7 Z 組中以EPMA 做WDS定量所得之結果……………………31
圖目錄
圖1 惰氣鎢極遮護電弧銲接基本設備與電弧產生原理示意圖…..32
圖2 (a)各組在室溫與450℃下之磨耗重量損失……......................33
(b) X 組摩擦係數與時間關係………………………………...33
(c) Z 組摩擦係數與時間關係…………………………………34
(d) SKD61 熱作工具鋼摩擦係數與時間關係………………..34
圖3 Mo-C系統之二元相圖…………………………………………35
圖4 Fe-Mo 系統之二元相圖(a)MoC (b)α-Mo2C (c)β-Mo2C……...35
圖5 碳化鉬的堆疊示意圖…………………………………………..36
圖6 η-Fe3Mo3C 相的結構示意圖……..…………………………….37
圖7 就相同的成長速率而言,溫度梯度對於凝固組織的影響……38
圖8 單一相合金中,不同的凝固組織……………………….……..39
圖9 預佈塗粉末0.5mm 於試片示意圖…………………………….39
圖10 實驗流程圖………………………………………………….….40
圖11 X組X光繞射圖………………………………………………...41
圖12 Z 組X 光繞射圖………………………………………………..42
圖13 X 組俯視面在SEM下之BEI 影像…………………………….43
圖14 X 組凝固組織top view 之mapping 結果………………………46
圖15 X 組凝固組織cross-section 之mapping 結果………………….48
圖16 Z 組俯視面在SEM下之BEI 影像……………………………..52
圖17 Z 組凝固組織top view之mapping 結果………………….……55
圖18 Z 組凝固組織cross-section 之mapping 結果…………………..57
圖19 X 組經TIG 銲覆後,凝固組織的TEM照片…………..……….61
圖20 X 組經TIG 銲覆後,凝固組織的TEM照片………….….…….64
圖21 Z 組經TIG銲覆後,凝固組織的TEM照片……….….….…….66
圖22 η-Fe3Mo3C之crystal graphic………………………….………..69
圖23 X 組凝固組織示意圖…………………………………………..70
圖24 Z 組凝固組織示意圖…………………………………………..70
附錄目錄
附錄A. Fe-Mo-C 三元相圖
A-1. Isothermal section at 1273℃……………………….……………71
A-2. Isothermal section at 1000℃……………………….……………72
A-3. Isothermal section at 800℃………………………...……………73
A-4. Isopleths at constant 55 at.% Fe………………………………....74
A-5. Isopleths at constant 85 at.% Fe………………………………....75
附錄B. Fe-Mo-C 相關JCPDS Files
B-1. Mo………………………………………………………………..76
B-2. γ-Fe……………………………………………………………....77
B-3. β-Mo2C…………………………………………………………..78
B-4. η-Fe3Mo3C……………………………………………………….79
附錄C. Calibration of TEM
C-1. Calibration of JEOL 3010AEM……………………………….....80
C-2. Calibration of JEOL 200CX………………………………..........81
參考文獻 References
1. 陳志鵬,”銲接學”。全華科技圖書公司,台北市,2002年4月。
2. 溫慶三,”鐵鉬碳鈦銲覆合金化塗層之抗高溫磨耗性質研究”,國立中山大學91學年度碩士論文。
3. J-O. Andersson, “A thermodynamic evaluation of the Fe-Mo-C system”.CALPHAD, Vol.12, No.1(1988) 9-23.
4. T. P. St. Clair, S. T. Oyama, D. F. Cox, S. Otanib, Y. Ishizawa, R-L.Lo, K-I. Fukui and Y. Iwasawa, “Surface characterization of α-Mo2C (0001)”. Surface Science, 426(1999) 187-198.
5. H. W. Hugosson, O. Eriksson, L. Nordström, U. Jansson, L. Fast, A.Delin, J. M. Wills, and B. Johansson, “Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide”. American Institute of Physics, Vol.86,
6. H. W. Hugosson, U. Jansson, B. Johansson, and O. Eriksson,“Restricting dislocation movement in transition metal carbides by phase stability tuning”. Science, 28 SEPTEMBER Vol.293(2001)
7. T. P. St. Clair, S. T. Oyama, and D. F. Cox, “CO and O2 adsorption on a-Mo2C (0001)”. Surface Science, 468 (2000) 62–76.
8. S. Nagakura, and S. Oketani, “Structure of transition metal carbides”. Trans. ISIJ, Vol.8(1968) 265-294.
9. W. C. Cheng, and H. Y. Lin, “The formation of austenite annealing twins from the ferrite phase during aging in an Fe/Mn/Al alloy”.Materials Science and Engineering, March(2002) 106-111.
10. D. A. Porter, and K. E. Easterling, “Phase Transformations in Metals
and Alloys”. Second edition, (1992).
11. S. A. David, and J. M. Vitek, “Correlation between Solidification Parameters and Weld Microstructures”. International Materials Reviews, 34(1989) 213-245.
12. Lu, H. Hugossonb, O. Erikssonb, L. Nordström, and U. Jansson,“Chemical vapour deposition of molybdenum carbides: aspects of phase stability”. Thin Solid Films, 370(2000) 203-212.
13. L. G. Rosa, J. C. Fernandes, P. M. Amaral, D. Martínez, J. Rodríguez, and N. Shohoji, “Photochemically promoted formation of higher carbide of molybdenum through reaction between metallic molybdenum powders and graphite powders in a solar furnace”.International Journal of Refractory Metals & Hard Materials, 17 (1999)351-356.
14. T. Ya. Velikanova, V. Z. Kublii, and B. V. Khaenko, “Solid state transformations and phase equilibria in the molybdenum-carbon system”. Plenum Publishing Corporation, (1989) 891-896.
15. N. Fujita and H. K. D. H. Bhadeshia, “Precipitation of molybdenum carbide in steel: multicomponent diffusion and multicomponent capillary effects”. Materials Science and Technology, June Vol.15(1999) 627-634.
16. D. V. Shtansky† and G. Inden, “Phase transformation in Fe-Mo-C and Fe-W-C Steels— . The structure evolution during tempering at Ⅰ700 ”. Acta Metallurgical, Vol.45, No.7(1997) 2861 ℃ -2878.
17. D. V. Shtansky† and G. Inden, “Phase transformation in Fe-Mo-C and Fe-W-C Steels— .Eutec Ⅱ toid reaction of M23C6 carbide decomposition during austenitization”. Acta Metallurgical, Vol.45, No.7(1997) 2879-2895.
18. E. Pagounis, M. Talvite , and V.K.Lindroos, “Influence of the metal/ceramic interface on the microstructure and mechanical properties of hiped iron-based composites”. Composites Science and Technology, 56 (1996) 1329-1337.
19. J. F. Archard, and J. Appl., Physics, Vol.24(1953) 981.
20. E. Rabinowicz, “Friction and wear of materials”. New-York, John Willey and Sons, Inc. (1965).
21. P. Villars, and L. D. Calvert, “Pearson’s Handbook of Crystallographic
Data for Intermetallic Phases”. AMERICAN SOCIETY FOR METALS, Vol.3, Nov.(1985)
22. D. B. Williams, and C. B. Carter, “Transmission Electron Microscopy”. (1996)
23. J. W. Edington, “Monographs in Practical Electron Microscopy in Materials Science”. (1976)
24. X. Changqing, and J. Zhanpeng, “Evolution of microstructure and diffusion paths in the molybdenum-steel explosion weld interface during heat treatment”. Materials Science and Engineering, May(1992) 235-239.
25. H. K. Oh, “Physics of plasticity”. Journal of Materials Processing Technology, 97(2000) 19-29.
26. 晁成虎,”鐵錳鋁碳合金雷射銲件的冶金特性研究”,國立中山大學80學年度博士論文。
27. 林偉邦,”氧化鋁及部分穩定氧化鋯電漿噴塗層之雷射表面改質及其顯微組織變化”,國立中山大學83學年度博士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.0.157
論文開放下載的時間是 校外不公開

Your IP address is 3.143.0.157
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code