Responsive image
博碩士論文 etd-0716103-141108 詳細資訊
Title page for etd-0716103-141108
論文名稱
Title
直接能隙半導體折射係數計算公式之改進
Improvement of Refractive Index Models for Direct-Gap Semiconductors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-23
繳交日期
Date of Submission
2003-07-16
關鍵字
Keywords
折射係數、吸收係數
Refractive Index, Absorption Coefficient
統計
Statistics
本論文已被瀏覽 5656 次,被下載 0
The thesis/dissertation has been browsed 5656 times, has been downloaded 0 times.
中文摘要
中文摘要

本論文旨在改進直接能隙半導體折射係數計算公式。因為對於直接能隙化合物半導體的折射係數光譜( ),目前只有很少的實驗數據且大部分都小於能隙(bandgap)以下。為了設計最佳化光電元件如光波導(waveguide),電制吸收調變器(electro-absorption modulator EAM)和Mach-Zendar 干涉儀(MZI)。我們必須利用有限的實驗數據,將折射係數光譜圖延伸到接近而且大於能隙的位置。
我們知道折射係數二次方為介電係數,所以我們將介電係數分解為能隙間(band-to-band)的吸收項和高能量振盪子(high energy single-oscillator)的吸收項。
對於在能隙間吸收項的吸收係數模型,我們再加入能帶延展效應的參數 (broadening parameter),再以Kramers-Kronig Transform理論求得能隙間吸收項的介電常數。而對於高能量振盪子的背景吸收項,我們先將有限的實驗數據扣掉能隙間吸收項,再以Sellemier’s Model擬合(fitting)出三個參數(A、B、C)的方程式。最後整合所有方程式,並將折射係數光譜延伸到接近而且大於能隙以上的位置。
我們成功地建立起完整的模型,並以砷化鎵來驗證我們的模型,其實驗數據與我們的模擬計算非常地吻合。我們進一步應用到直接能隙二元、三元和四元化合物半導體材料,將折射係數光譜延伸到接近而且大於能隙的位置以上,並得到很好的結果。
Abstract
Abtract

In this thesis, our purpose is to improve the refractive index models for direct-gap semiconductors. For refractive index spectrum of direct-gap compound semiconductors, most experimental data is available only bellow the bandgap absorption edge. For used in the optimum design of eltro-optic devices, such as waveguide, electro-absorption modulator and Mach-Zehnder interferometer. We have to utilize a little experimental data to extend refractive index spectrum to near and just above the band-gap edge.
We have known that square of refractive index ( ) is dielectric constant ( ), so we decompose the dielectric constant ( ) into the part of band-to-band absorption and another part of single-oscillator high energy absorption.
For the part of band-to-band absorption, we added broadening parameter ( ) and used Kramers-Kronig relation to transform the absorption coefficient into dielectric constant. For another part of single-oscillator high energy background absorption, we first cut the absorption part form experimental data and then use Sellmeier’s equation to fit the residue data. Finally, recombine all equations and extend refractive index spectrum to near and just above the band-gap edge.
We successfully built whole model and confirm our model with GaAs. The calculation result on GaAs shows an excellent agreement with the reported experimental data. Furthermore, We apply our model to direct-gap binary、ternary and quaternary compounded materials and extend our model to near and just above the band-gap edge very well.
目次 Table of Contents
第一章 緒論………………………………………………………………..….1
1-1 前言….……………..........................................................………..1
1-2 動機……..….……………………………......….…………….…..2
1-3 論文架構………………………………………..…………….…..3

第二章 吸收係數之原理及推導過程…………………………………..4
2-1電子與光子交互作用之Hamiltonian函數…………………….....4
2-2單位光強度………………………….…………………..………...6
2-3躍遷機率………………………..……….………….……………..7
2-4應用Fermi-Golden Rule推導吸收係數……………………..……9

第三章 直接能隙半導體折射係數計算公式之改進……………...…14
3-1簡介………………….…….…..……..……………….………….14
3-2古典模型………………………………………………..……..…14
3-3改進能隙吸收邊的折射係數理論模型…………………..…..…16
3-3-1模型的來源………………………………………………...16
3-3-2理論吸收模型的建立與假設………...……………..……..18
3-3-3理論吸收模型之驗證…………………………….…….….21
3-4基本折射係數理論推導…………….…………………………...24
3-5 Kramers-Kronig Transform…………………………………..…..26


第四章 結果與分析……………………………………………..……………30
直接能隙半導體的二元化合物
…………………………………...………...………..………......32
………………………….…………….……….…………...……..34
………………………………………………………….………..36
直接能隙半導體的三元化合物
………………………………………………..…….…..38
直接能隙半導體的四元化合物 …………………...……………….......40
(X=0 , )……………………………………...………..41
(X=0.3 , )…………………………….………..42
(X=0.5 , )…………………….……….…….…..43
(X=0.7 , )…………………………….…….…..44
(X=1.0 , )……………………………………………..45
(X=0.0∼1.0 比較圖)………………..………………….…..……..46
(X=0.0∼1.0 參數A, B, C)……………..…………………………48

第五章 結論…………………………………………………………….…….51

參考文獻………………………………………………………………..……..52

附錄A Kramer-Kronig轉換式……………………………………….……...54
A-1能隙間吸收係數光譜 ……………………..………….…...54
A-2 積分轉換式 …………………...…………..……….56
A-3 積分轉換式 …………………………...…….…….58
A-4留數定理………………………….…………..……………..…...60
A-5 Kramers-Kronig轉換式結果…………………………………....72

附錄B 方程式迴授及收斂求解…………………………….….…………….73

附錄C 方程式迴授及收斂求解…………………………….….………….…77
C-1 Matlab模擬理論吸收模型 .................................................77
C-2 Matlab模擬完整理論折射率模型 …….……………….....80
參考文獻 References
參考文獻

[1] M. J. Mondry, D. I. Babic, J. E. Bowers, and L. A. Colden, ‘‘Refractive indexes of (Al, Ga, In) As epilayers on InP for optoelectronic applications’’, IEEE photonics technology letters, Vol. 4, No.6, June 1992
[2] Gabriela Livescu, David A. B. Miller, D. S. Chemla, MEMBER, IEEE, M. Ramaswamy, T. Y. Chang, MEMBER, IEEE, Nicholas Sauer, A. C. Gossard, and J. H. English,(Invited Paper) ‘‘Free Carrier and Many-Body Effects in Absorption Spectra of Modulation-Doped Quantum Wells’’, IEEE Journal of Quantum Electronics, Vol. 24, No.8, August 1988
[3] G. D. Pettit and W. J. Turner, ‘‘Refractive Index of InP’’, J. Appl. Phys., vol. 36, (1965)
[4] S. Gehrsitz, F. K Reinhart, C. Gourgon, N. Herres, A. Vonlanthen and H. Sigg, ‘‘The refractive index pf Al(x)Ga(1-x)As below the band gap: Accurate determination and empirical modeling’’, J. Appl. Phys., vol. 87, (2000)
[5] S. Adachi, ‘‘Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y’’, J. Appl. Phys., vol. 66, pp.6030-6040, Dec. 15, (1989)
[6] J. S. Blakemore, ‘‘Semiconducting and other major properties of gallium arsenide’’, J. Appl. Phys., vol. 53, R123(1982)
[7] Martin A. Afromowitz, ‘‘Refractive Index of Ga1-xAlxAs’’, Solid State Communications , Vol. 15, pp.59-63,(1974)
[8] B. Broberg and S. Lindgren, ‘‘Refractive index of In1-xGaxAsyP1-y layers and InP in the transparent wavelength region’’, J. Appl. Phys., vol. 55, (1984)
[9] D.D Sell, H. C. Casey Jr., and K. W. Wecht, ‘‘Concentration dependence of the refractive index for n- and p-type GaAs between 1.2 and 1.8 ev’’, J. Appl. Phys., vol. 45, Jun, (1974)
[10] Toru. TaKaGi, ‘‘Refractive index of Ga1-xAlxAs prepared by Vapor-Phase Epitaxy’’, J. Appl. Phys., vol. 17, No. 10, Oct, (1978)
[11] S. L. Chuang , Physics of Optoelectronic Devices, chapter 9. and chapter13. , A Wiley-Interscience Publication, New York.
[12] Pallab Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed., Prentice Hall International Editions
[13] L. A. Coldren , S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, A Wiley-Interscience Publication, New York/CHICHESTER/BRISBANE/TORONTO/SINGAPORE.
[14] 李雅明 著, 固態電子學(Solid State Electronics), Professor, Department of Electrical Engineering Tsing-Hua University, Taiwan, Republic of China.
[15] Charles Kittel, Introduction to Solid State Physics, John Wiley & Sons.
[16] G. P. Agrawal, N. K. Dutta, Semiconductor Laser, 2nd ed. , Van Nostrand Reinhold, New York.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.12.161.77
論文開放下載的時間是 校外不公開

Your IP address is 3.12.161.77
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code