Responsive image
博碩士論文 etd-0716103-144552 詳細資訊
Title page for etd-0716103-144552
論文名稱
Title
複晶矽薄膜電晶體於短通道效應下之元件特性與模擬
Characterization and modeling of short channel effects in polycrystalline silicon thin-film transistors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
51
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-04
繳交日期
Date of Submission
2003-07-16
關鍵字
Keywords
短通道效應、複晶矽薄膜電晶體
short channel effects, TFT, Poly-Si
統計
Statistics
本論文已被瀏覽 5652 次,被下載 3452
The thesis/dissertation has been browsed 5652 times, has been downloaded 3452 times.
中文摘要
在此論文裡,我們成功地製作與研究不同的通道長度與寬度的複晶矽薄膜電晶體。最特別的是我們利用了T型閘極結構與基底接觸電極量測到基底電流與電壓。因此,我們能更清楚研究發生在複晶矽薄膜電晶體裡的短通道效應。為了能夠仔細的研究碰撞游離效應與浮動基底效應,我們量測與比較了不同結晶界面的缺陷密度、晶粒大小與不同的通道尺寸的元件特性。這些因素對於短通道效應的影響也會在論文裡討論與解釋。
在本實驗裡,我們發現通道長度較短的元件有較好的驅動電流與較小的起始電壓。但在另一方面也觀察到由於碰撞游離效應所造成的kink現象。此外,由於薄膜電晶體是製作在玻璃基板上,就如同在製作在矽覆蓋絕緣層結構基板上的元件一樣,由於在通道下的矽基底中會有電洞累積,最後會造成寄生雙接面電晶體現象。在本論文研究裡,在量測短通道元件時我們觀察到相似於單電子元件的閉鎖現象發生,在此也對於此現象對不同的通道寬度來作討論。
為了研究與分析複晶矽薄膜電晶體下嚴重的碰撞游離效應所造成的元件特性。我們在傳統的薄膜電晶體的基底製作了接觸電極,可直接量測到基底的電流,藉此可更清楚地分析碰撞游離效應。此外元件在較大的閘極電壓操作下,我們可觀察到異常的基底電流。此現象是由於閘極下的反轉層與基底所發生的寄生穿隧效應所造成的。最後,我們提出了一個有物理依據的電流模型與實際量測到的基底電流作一個比較。最後我們考慮了垂直電場的散射現象,將此加入到我們的模型裡即可以得到與實驗數據更一致的高電場之碰撞游離模型。
Abstract
In this thesis, the poly-Si TFTs with different channel width and channel length are successfully fabricated and characterized. In particular, by using the T-gate structure and body contact, we can measure the substrate current and body voltage. Therefore, short channel effects in polycrystalline silicon thin-film transistors are investigated clearly. In order to study impact ionization effect and floating body effect more carefully, we measure and compare the electrical behaviors of device with different grain boundary trap density, grain size, and channel dimension. The influences of these factors on the short channel effects are also discussed and explained.
In this experiment, it is found that the devices with short channel length, exhibit improved normalized turn on current and smaller threshold voltage. But on the other hand the sever kink effect which generated by the impact ionization also observed. Moreover, the floating body under the channel region serve as a parasitic BJT as in silicon-on-insulator devices. The related single transistor latch-up is observed and discussed for short-channel devices with various channel width.
The severe impact ionization effects in polycrystalline silicon thin-film transistors are investigated and characterized. By directly measuring the substrate current from conventional TFTs with body contact, the impact-ionization effects can be characterized and analyzed very clearly. An anomalous substrate current under high gate voltage is observed. The parasitic tunneling effect between inversion region and body region is proposed to explain this phenomenon. Finally, a physically-based model is established and compared with the measured substrate current. Good agreements are found when the vertical field scattering effect is included into the maximum electric field impact ionization model.
目次 Table of Contents
Chinese Abstract I
English Abstract III
Contents V
Figure Captions VI
Chapter 1. Introduction 1
1-1. Overview of polysilicon thin-film transistor technology 1
1-2. Defects in ploy-Si film 3
1-3. The influences of grain structure on carrier transport 3
1-4. Motivation 6
1-5. Thesis outline 7
Chapter 2. Fabrication and Characterization 9
2-1. Device fabrication 9
2-2. Method of Device Parameter Extraction 11
2-2-1. Determination of the threshold voltage 11
2-2-2. Determination of the subthreshold swing 12
2-2-3. Determination of On/Off Current Ratio 12
2-2-4. Determination of the field-effect mobility 13
2-2-5. Determination of the trap density 13
2-2-6. Determination of the channel resistance and the parasitic resistance 14
2-3. Device characteristics and short channel effects 15
2-4. Characterization of the substrate current 17
Chapter 3. Unified Impact Ionization Model 20
3-1. The horizontal electric field model 20
3-2. The parasitic tunneling effect 21
3-3. Unified impact ionization model 22
3-4. Physical meanings of the extracted parameters 24
Chapter 4. Conclusions 25
References 26
Figures 32
參考文獻 References
Chapter 1
[1.1] H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157 (1989)
[1.2] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays ,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001
[1.3] H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992
[1.4] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.
[1.5] K. Yoshizaki, H. Takaashi, Y. Kamigaki, T.asui, K. Komori, and H. Katto, ISSCC Digest of Tech., p.166, 1985
[1.6] N. D.Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French , “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, pp. 1930-1936, 1996.
[1.7] T. Kaneko, U. Hosokawa, N. Tadauchi, Y. Kita, and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT's analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, Vol. 38, pp. 1086-1093, 1991
[1.8] U. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, Proc. of IEEE Solid-State
Circuits Conference (ISSCC), p. 266 , 1998.
[1.9] N.Yamauchi, U. Inava, and M. Okamura, “An integrated photodetector- amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonic Tech. Lett, Vol. 5, pp. 319-321, 1993.
[1.10] M. G. Clark, IEE Proc. Circuits Devices Syst, Vol. 141, 133 (1994)
[1.11] Noriyoshi Yamauchi, Jean-Jacques J. Hajjar and Rafael Reif, “Polysilicon Thin-Film Transistors with Channel Length and Width Comparable to or Smaller than the Grain Size of the Thin Film,” IEEE Trans. Electron Devices, Vol. 38, pp 55-60, 1991
[1.12] Singh Jagar, Mansun Chan, M. C. Poon, Hongmei Wang, Ming Qin, Ping K. Ko, Yangyuan Wang, “Single Grain Thin-Film-Transistor (TFT) with SOI CMOS Performance Formed by Metal-Induced-Lateral-Crystallization,” IEDM Tech. Dig., pp. 293-296, 1999.
[1.13] K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, Vol. 69, pp. 1703-1706, 1991.
[1.14] T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett, Vol. 13, pp. 309-311, 1992.
[1.15] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” IEDM Tech. Dig, Vol. 91, p. 563 (1991)
[1.16] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[1.17] P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato, “Anomalous off-current mechanisms in n-channel poly-Si thin film transistors.” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
[1.18] M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage
Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp.
385-387, 1993
[1.19] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characteristics of
polycrystalline-Si thin film transistors fabricated by excimer laser annealing
method,” IEEE Trans. Electron Devices, Vol. 41, pp. 1876-1879, 1994.
[1.20] Kwon-Young Choi and Min-Koo Han, “A novel gate-overlapped LDD
poly-Si thin-film transistor,” IEEE Electron Device Lett., Vol. 17, pp. 566-568,
1996.
[1.21] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, No. 11, pp. 1930-1936, 1996.
[1.22] R. K. Watts and J. T. C. Lee, “Tenth-Micron Polysilicon Thin-film
Transistors,” IEEE Electron Device Lett., Vol. 14, pp. 515-517, 1993.
[1.23] “Polycrystalline silicon for integrated circuits and displays”, second edition,
written by Ted Kamins, pp.200-210.
[1.24] Po-Sheng Shih, Hsiao-Wen Zan, Ting-Chang Chang, Tiao-Yuan Huang and Chun-Yen Chang, “Dimensional Effects in the Drain Current of N- and P-Channel Polycrystalline Silicon Thin Film Transistors,” Jpn, J. Appl. Phys., Vol. 39, pp. 3879-3882, 2000.
[1.25] Noriyoshi Yamauchi, J.Hajjar, and Rafael Reif, “Unusually abrupt switching in submicrometer thin-film transistors using a polysilicon film with enhanced grain size,” IEEE Electron Device Lett., Vol. 11, pp. 15-17, 1990.
[1.26] N. Yamauchi, J-J. J. Hajjar, and Rafael Reif, “Drastically improved performance in poly-Si TFTs with channel dimensions comparable to grain size,” IEDM Tech. Dig., pp.353-356, 1989.

Chapter2
[2.1] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[2.2] R. E. Proano, R. S. Misage, D. G. Ast, ”Development and Electrical Properties of Undoped Polycrystalline Silicon Thin-Film Transistors.” , IEEE Electron Device Lett. Vol. 36. No. 9. pp. 1915-1922, Sept. 1989.
[2.3] Shengwen Luan and Gerold W. Neudeck, ”An experimental study of the source/drian parasitic resistance effects in amorphous silicon thin film transistors.” , J. Appl. Phys. Vol. 72, No. 2,pp.766-772, 15 July 1992.
[2.4] Noriyoshi Yamauchi, J.Hajjar, and Rafael Reif, “Unusually abrupt switching in submicrometer thin-film transistors using a polysilicon film with enhanced grain size,” IEEE Electron Device Lett., Vol. 11, pp. 15-17, 1990.
[2.5] C.-E. Daniel Chen, Mishel Matoubian, R. Sundaresan, B,-Y. Mao, C. C. Wei, and Gordon P. Pollack,”Single-Transistor Latch in SOI MOSFET’s”, IEEE Electron Device Lett. VOl. 9, No. 12, Dec 1988.
[2.6] Jin-Young Choi, Jerry G. Fossun,”Analysis and Control of Floating-Body Bipolar Effects in Fully Depleted Submicrometer SOI MOSFET’s.”, IEEE Electron Device Lett. VOl. 38, No. 6, JUNE 1991.
[2.7] J. Pretet, N. Subba, D. Ioannou, S. Cristoloveanu, W. Maszara, and C. Raynaud, “Reduced floating body effects in narrow channel SOI MOSFETs,” IEEE Electron Device Lett., vol. EDL-23, pp. 55-57, Jan. 2002.
[2.8] S.M Sze, Physics of Semiconductor Devices, 2nd ed. New York:Wiley, 1981, p. 482.
[2.9] Chen-Ming Hu, Simo C. Tam, Fu-Chieh Hsu, Pink-Keun Ko,Tung-Yi Chan, and Kyle W. Terrill.”Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement. ”, IEEE Trans. Electron Devices. Vol. ED-32, No. 2 , pp. 375-385, Feb 1985.

Chapter3
[3.1] Chen-Ming Hu, Simo C. Tam, Fu-Chieh Hsu, Pink-Keun Ko,Tung-Yi Chan, and Kyle W. Terrill.”Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement. ”, IEEE Trans. Electron Devices. Vol. ED-32, No. 2 , pp. 375-385, Feb 1985.
[3.2] Hsin-Li Chen, Ching-Yuan Wu, ”A new I-V model consideriong the Impact-Ionization effect initiated by the DIGBL current for the intrinsic n-Channel Poly-Si TFT’s.” IEEE Electron Device Lett. VOL.46, No. 4 , April 1999
[3.3] Hongchin Lin,Jemin Lin,Robert C. Chang,”Inversion-Layer induce boby current in SOI MOSFETs With Body contacts.”, IEEE Electron Device Lett. 2003.
[3.4] S.M Sze, Physics of Semiconductor Devices, 2nd ed. New York:Wiley, 1981, p. 525~526.
[3.5] To-Sing Li and Pole-Shang Lin,”On the Pseudo-Subthreshold Characteristics of Polycrystalline-Silicon Thin-Film Transistors with Large Grain Size.”, IEEE Electron Device Lett. VOL.14, No. 5, MAY 1993.
[3.6] Steve. S. Chung, Darren C. Chen, C. T. Cheng, and C. F. Yeh, “A physically-based built-in Spice poly-Si TFT model for circuit simulation and reliability evaluation,” IEDM Tech. Dig., pp. 139-142, 1996.
[3.7] Dae M. Kim, A. N. Khondker, S. S Ahmed, and Rajiv R. Shah, “Theory of conduction in polysilicon: drift-diffusion approach in crystalline-amourphous-crystalline semiconductor system – part I: small signal theory,” IEEE Trans. Electron Devices, Vol. 31, No. 4, pp. 480-493, April 1984.
[3.8] M. Valdinochi, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, Vol. 44, No. 12, pp. 2234-2241, Dec. 1997.
[3.9] S. C. Lin, and J. B. Kuo, “Temperature-Dependent Kink Effect Model for Partially-Depleted SOI NMOS Devices,” IEEE Trans. Electron Devices, Vol. 46, No. 1, pp. 254-258, Jan. 1999
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code