Responsive image
博碩士論文 etd-0716103-185036 詳細資訊
Title page for etd-0716103-185036
論文名稱
Title
氟離子佈植碳化矽阻障介電層與銅連線製程整合之研究
Study on Integration Process of Fluorine ion implanted Silicon Carbide Barrier Dielectric and Copper Interconnection Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-04
繳交日期
Date of Submission
2003-07-16
關鍵字
Keywords
碳化矽、氟離子佈植
Silicon Carbide, Fluorine ion implant
統計
Statistics
本論文已被瀏覽 5676 次,被下載 4822
The thesis/dissertation has been browsed 5676 times, has been downloaded 4822 times.
中文摘要
本論文研究積體電路製造技術中的多層導體連線製程。為了因應未來深受矚目的深次微米積體電路,元件的尺寸必須不斷地縮小;而多層金屬導體連線的設計,也成為超大型積體電路技術所必須採用的方式。然而,隨著金屬導線層的數目增加及導線間的距離不斷縮小,電子訊號在金屬連線間傳送時,金屬連線的電阻-電容延遲時間(RC delay time),變成半導體元件速度受限的主要原因。為了降低訊號傳遞的時間延遲:在降低電阻方面,現今以金屬銅(電阻率為1.7μΩ-cm)來取代過時的金屬鋁(電阻率為2.7μΩ-cm)成為導線的連線系統。此外,由於元件縮小導致傳輸導線的電流密度增加,使導線內的電致遷移效應(electromigration)更嚴重,而銅的原子比鋁原子來得重,故可適當抑制電致遷移效應。而在降低電容方面,則朝向低介電常數 ( low-k ) 材料發展。但是在銅與鑲嵌的製程與電性操作的環境下,溫度與電場的作用,銅極易擴散至低介電常數材料中,並與之發生反應,造成材料特性的劣化與漏電流增大,甚至導致介電質崩潰。因此,在符合製程相容性要求的前提之下,發展具抗銅金屬擴散特性的介電阻障層材料,便成為重要的研究課題。
目前一種碳化矽(silicon carbide)材料薄膜,具有低的介電係數(k=4~5),因此受到廣大的矚目,而被應用於介電阻障層技術中,用來取代傳統具高介電係數的氮化矽(silicon nitride) (k~8),以降低導線系統的延遲時間。本論文將討論碳化矽膜的材料基本特性,以及其在製程整合時會遇到的一些問題,例如氟電漿與熱退火處理對碳化矽膜的影響;除此之外並研究其與銅導線整合時,所衍生的電性問題,並探討其漏電流的機制。
Abstract
This thesis is to research connection process of multi-level conductor in integration circuits (ICs) manufacture technology. For the sake of sub-micro ICs which is gazed by people in the future, device’s dimension have to be scaled down unceasingly; besides, the design of conductor connection of multi-level metal is also to be adopted for ULSI technology. However, the number of metal connection layer is increasing as well as the distance between wires is shorter and shorter, which leads to the fact that the RC delay time of metal interconnection is the primary reason of limiting the speed of semiconductor device while electronic signal is delivered among metal interconnection. In order to lower delay time of signal propagation, there are two parts in the following:
In the aspect of lowering resistance, we substitute copper (resistance is 1.7μΩ-cm) at present for aluminum (resistance is 2.7μΩ-cm ) in the past so as to make copper be the wire for interconnection system. Furthermore, the scaled down device not only increase the current density of the wire but also increase the severity of electromigration inside the wire. Copper atoms are so heavier than aluminum atoms that copper atoms can restrain electromigration appropriately. In the aspect of decreasing capacitance, we will develop low dielectric constant (low-k). But copper with Damascene manufacture under the conditions of external operation such as temperature and electric field give rise to the fact that Cu diffuses into low-k material so easily that copper and low-k interact, which deteriorates the characteristic of the material、raises the leakage current and leads to the breakdown of the dielectric material. Therefore, it must be an important topic for study that we search for the dielectric barrier material with the characteristic against copper diffusion under the demand coinciding with integration process compatibility.
At present, because of the material film called silicon carbide with low dielectric constant (k=4~6) attracts a lot of people’s eyes deeply, it can applied to dielectric barrier technology to replace traditional dielectric barrier silicon nitride with high dielectric constant (k~8) for the purpose of alleviating delay time of the wire system. This thesis will discuss fundamental characteristics of silicon carbide film and some problems during the integration process. For instance, the impacts on silicon carbide under the conditions of fluorine plasma and thermal treatment; furthermore, this thesis will research the electric problems from the integration of low-k dielectric barrier and copper wire as well as probes into mechanism of leakage current.
目次 Table of Contents
Chapter 1 Introduction
1.1. General Background………………………….…….. 1
1.2. Motivation and Material Options…………………… 3
1.3. Organization of This Thesis………………………… 5

Chapter 2 Characteristics of Silicon Carbide Film
2.1. Introduction……………………………………………6
2.2. Manufacture of silicon carbide……………………….. 7
2.3. Experimental procedure and analyses…………………7

Chapter 3 Electrical characteristics of silicon carbide film
3.1. Introduction………………………………………….. 11
3.2. F ion implant damage effect…………………………. 12
3.3. Thermal annealing effect on silicon carbide film……. 12
3.4. Electrical property of silicon carbide………………… 13

Chapter 4 BTS measurement of silicon carbide film
4.1. Introduction…………………………………………... 16
4.2. Experiment process…………………………………... 16
4.3. BTS effect on silicon carbide film…………………… 17

Chapter 5 Conclusion

References…………………………………………………………………… 20
參考文獻 References
[1] L. peters, “Pursuing the perfect low-k dielectric”, Semiconductor International, vol. 21, no. 10, Sept. pp.64 (1998).
[2] G. Deltoro, N. Sharif, in : Internal electronic manufacturing technology symposium, pp.185 (1999)
[3] N. Awaya, H. Inokawa, E. Tamamoto, Y. Okazaki, M. Miyake, Y. Arita, and T. Kobayashi, “Evaliuation of a copper metallization process and the electrical characteristics of copper-interconnected quarter-micron CMOS,” IEEE Trans. Electron Device, vol. 39,pp. 1206-1212, August 1996.
[4] J. Tao, N. W. Cheung, ad C. Hu, “Electromigration scharacteristics of copper interconnects, ” IEEE electron Device Lett, vol. 14, pp.249-251, May 1993.
[5] T. Sakurai, “Closed-form expressions for interconnection delay, coupling and crosstalk in VLSI’s”, IEEE trans. Elec. Devices, 40, pp.118 (1993).
[6] M. Rossnegal and D. Mikalsen, “Collimated magnetron sputter deposition”, J. Vac. Sci. Technol., A-9, pp.261 (1991).
[7] T. H. Lee, “Nitridation effect on the barrier property of Mo and Cr layer in Cu/barrier/SiO2/Si MOS structure”, Master Thesis, National Chiao-Tung University, Hsinchu, Taiwan, (1997).
[8] J. D. Mcbrayer, R. M. Swanson, and T. W. Sigmon, J. Electrochem. Soc., vol. 133, no. 6, pp. 1242-1246, 1986.
[9] Y. S. Diamand, A. Dedhia, D. Hoffstetter, and W. G. Oldham, J. Electrochem. Soc., vol.0140, no. 8, pp. 2427-2432, (1993).
[10] A. L. S. Loke, C. Ryu, C. P. Yue, J. S. H. Cho, and S. S. Wong, IEEE Electron Device Lett,. Vol. EDL-17, pp. 549-551, Dec. (1996).
[11] D. Gupta, Mater.., Res. Soc. Sym. Proc, vol. 337, pp. 209-215, (1994).
[12] S. M. Sze, Physics of Semiconductor Devices, 2nd ed, p. 402, John Wiley & Sons, New York, (1981), Chap. 6-8.
[13] T. B. Massalski, Editor-in-Chief, Binary Alloy Phase Diagrams, 2nd ed. Material Park, OH: ASM Int., (1990).
[14] A. Cros, M. O. Aboelfotoh, and K. N. Tu, J. Appl. Phys., vol. 67, no. 7, pp. 3328-3336, (1990).
[15] L. Stolt and F. D’heurle, Thin Solid Films, vol. 189, pp. 269-274, (1990).
[16] J. Echigoya, H. Enoki, T. Satoh, T. Waki, M. Otsuki, and T. Shibata, Appl. Surf. Sci., vol. 56-58, pp. 463-468, (1992).
[17] M. Vogt, M. Kachel, K. Drescher, “Dielectric Barrier for Cu Metallization System”, Materials for Avanced Metallization, pp.51, (1997).
[18] M. Vogt, M. Kachel, K. Drescher, “Dielectric Barrier for Cu Metallization System”, Microelectronic Engineering, pp.181-187, (1997).

[19] T. Lauinger, J. Moscchner, A. G. Aberle, and A. G. Hezel, “UV stability of highest-quality plasma silicon nitride passivation of silicon solar cells”, “n Conf. Rec. 25th IEEE Photovoltaic Specialists Conf ”, 1996, pp. 413-419.
[20] S.M.Hu, “Properties of amorphous silicon nitride”, J. Electrochem. Soc. ,vol.33, pp. 693-698, 1966.
[21] V. Y. Doo, D.R. Nichols, and G. A. Silvery, “Preparation and properties of pyrolytic silicon nitride, “J. electrochem. Soc. ,vol. 33, pp. 1279-1281, Oct.1966.
[22] “ The national technology roadmap for semiconductors, 1999 edtion ,” Semiconductor International Association, San Jose, CA, 1999.
[23] Byung Keun Hwang, Mark J. Loboda, Glenn A. Cerny, Ryan F. Schneider, Jeff A. Seifferly and Tom Washer, “The characterization of trimethylsilane based PE-CVD a-SiCO:H low-k films” IEEE, (2000).
[24] M. J. Loboda, “New solutions for intermetal dielectrics using trimethylsilane-based PECVD processes” , Microelectronic Engineering 50, pp.15-23, (2000).
[25] Ping Xu, Kegang Huang, Anjana Patel, Sudha Rathi, Betty Tang, John Ferguson, Judy Huang and Chris Ngai, “BLOKTM – a low-k dielectric barrier/etch stop film for copper damascene applications” , IITC, pp.109-111, (1999).
[26] Takeshi Frusawa, Noriyuki Sakuma, Daisuke Ryuzaki, Seichi Knodo, Ken-Ichhi Takeda, Shun-taro Machida and Kenji Hinode, “Simple, reliable Cu/low-k interconnect integration using mechanically strong low-k dielectric material : silicon-oxycarbide” , IEEE (2000).
[27] Dong S. Kim, Young H. Lee, “Annealing effects on a-SiC:H(F) thin films deposited by PECVD at room temperature” , Thin Solid Film, 261 , pp.192-201,(1995).
[28] J. Huran, L. Hrubcin, A. P. Kobzev and J. Liday, “Properties of amorphous silicon carbide films prepared PECVD” , Vacuum, volume 47/no. 10 ,pp. 1223-1225, (1996).
[29] G. Constantindis, “Processing technologies for SiC”, IEEE (invited paper), pp.161-170, (1997) .
[30] F. Lanckmans, K. Maex, “Use of a capacitance voltage technique to study copper drift diffusion in (porous) in organic low-k material, Microelectronic Engineering 60 (2002), pp125-132.
[31] J.G. Simmons, in L.I. Maissel and R. Glang(Eds.), Handbook of Thin Film Technology, Chap. 14, pp,25, McGraw-hill, New York, (1970)
[32] S. M. Sze, Physics of Semiconductor Devices, Ch. 7,pp. 402, John Wiley & Sons, New York, (1981)
[33] Techniques and Applications of Plasma Chemistry; Hollahan, J. R.; Bell, A. T., EDS. ; Wiley: New York, 1974.
[34] Chemical Reactions in Electrical Discharges; Blaustein ,B. D., Ed; Advance in Chemistry Series 80; American Chemical Society: Washington, DC, 1969.
[35] J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, “Diffusion of metals in Silicon Oxide ,” J. Electrochem. Soc., vol. 133, no. 6, p.1241-1246,1986
[36] Kawakami, N.; Fukumoto, Y.; Kinoshita, T.; Suzuki, K.; lnoue, K.-1., Interconnect Technology Conference, 2000. Proceedings of the IEEE 2000 International, 2000, Page(s):143-145
[37] Soo Geun Lee, yun Jun Kim, Seung Pae Lee, Hyeok-Sang Oh, Seung Jae Lee, Min Kim, II-Goo Kim, JaeHak Kim, Hong-Jae Shin, Jin-Gi Hong, Hyeon-Doek Lee and Ho-Kyu Kang. “Low dielectric constant 3MS α-SiC:H as Cu diffusion barrier layer in Cu dual damascene process”, Jpn. J. Appl. Phys. Vol.40 pp.2663-2668, Part. 1, No. 4B, April 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code