Responsive image
博碩士論文 etd-0716106-221528 詳細資訊
Title page for etd-0716106-221528
論文名稱
Title
具有奈米線之非揮發性記憶薄膜電晶體的製作與研究
Investigation and Fabrication of Novel Nonvolatile SONOS-TFT Memory with Nano-wires Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-07
繳交日期
Date of Submission
2006-07-16
關鍵字
Keywords
奈米點、奈米線、記憶體
SONOS-TFT, nanowires, memory, nanocrystals
統計
Statistics
本論文已被瀏覽 5662 次,被下載 14
The thesis/dissertation has been browsed 5662 times, has been downloaded 14 times.
中文摘要
傳統的浮停閘快閃記憶體是利用連續的多晶矽半導體薄膜作為載子儲存的單元,而在元件尺寸持續微縮下此結構將面臨一些瓶頸,為了克服瓶頸因而衍生出兩種非揮發性記憶體結構:一種是SONOS非揮發性記憶體,另一種是奈米晶體(量子點)非揮發性記憶體。
在本論文中,主要在探討將記憶體元件製作在類似玻璃基板上的特性,透過學長先前製作多重奈米線通道(multiple nanowire channel)之複晶矽薄膜電晶體(poly-Si TFTs)的經驗,SONOS非揮發性記憶體將與複晶矽薄膜電晶體互相整合,而製作具有奈米線之非揮發性記憶薄膜電晶體(Nonvolatile SONOS TFT memory with Nano-wire structure),由於十條奈米線通道之元件具有較優越與較穩定的電特性,論文內容主要針對一條通道且其寬度為1μm與十條奈米線通道其每條寬度為65nm之元件的記憶體特性作比較,可以明顯發現十條奈米線結構具有較大的記憶窗,且有比較高的寫入/抹除效率,主要是由於十條奈米線之記憶體元件具有分立奈米線,使得閘極環跨於通道時,形成環繞式的三向閘極(tri-gate),閘極擁有較佳的控制能力,且閘極與通道形成多處稜角,此處有較強的電場分佈,使得電子較易透過FN-tunneling通過穿隧氧化層而儲存於氮化矽層的缺陷能階內,造成起始電壓的改變,而有記憶體的特性,此技術將有機會被利用在系統面板上。
另外,金屬奈米點的記憶體元件在低溫環境下的製作也將被探討,透過低溫快速熱氧化條件來讓金屬奈米點析出,能夠儲存載子而具有記憶體特性,並且爭對元件之寫入/抹除效率、可靠度做分析,由於是在低溫的環境下被製作,未來將能夠進一步的與薄膜電晶體互相整合。
Abstract
The conventional floating gate NVSM will suffer some limitations for continued scaling of the device structure. Therefore, two approaches, the silicon-oxide-nitride-oxide-silicon (SONOS) and the nanocrystal nonvolatile memory devices, have been investigated to overcome the limit of the conventional floating gate NVSM.
In this thesis, the SONOS-TFT with multiple nanowires structure was proposed and fabricated for memory applications. The memory characteristic of standard SONOS-TFT, channel width of the device is 1μm, was compared with the nanowires SONOS-TFT, each channel width of the device is 65nm. The SONOS-TFT with multiple nanowires structure (NW SONOS-TFT) has good program/erase efficiency, retention and transfer characteristics due to the larger electric field at the corner region and more number of corners. The NW SONOS-TFTs can be treated as high performance devices and also as high program/erase efficiency nonvolatile memory under adequate voltage range operation. The fabrication of SONOS-TFTs with nano-wire channels is quite easy and involves no additional processes. Such a SONOS-TFT is thereby highly promising for application in the future system-on-panel display applications.
In addition, the metal nanocrystals nonvolatile memory fabricated at low temperature is also studied in this thesis. The Ni-silicide nanocrystals memory was successfully fabricated at low temperature. The rapid thermal oxidation at low temperature was executed to make the metal nanocrystals aggregate. The device has superior memory characteristics, such as program/erase efficiency, retention time and endurance. The nonvolatile metal nanocrystals memory fabricated at low temperature processes is very promising for the application on the portable products and panel displays.
目次 Table of Contents
Chapter1 Introduction

1.1. General Background

1.2. SONOS Nonvolatile Memory Devices

1.3. Nanocrystal Nonvolatile Memory Devices

Figures

Chapter2 Basic Mechanisms of Nonvolatile Memory

2.1. Introduction

2.2. Basic Program/Erase Mechanisms

2.2.1 Tunneling Injection

2.2.2 Hot-Electron Injection

2.2.3 Band to Band Assisted Hole Injection

2.3. Basic Reliability of Nonvolatile Memory

2.3.1 Retention

2.3.2 Endurance

2.4. Basic Physical Characteristic of Nanocrystals NVM

2.4.1 Quantum Confinement Effect

2.4.2 Coulomb Blockade Effect

Figures

Chapter3 Novel Nonvolatile SONOS-TFT Memory with Nano-wires Structure

3.1. Motivation

3.2. Experimental Procedures

3.2.1 Device Fabrication

3.2.2 Physical and Electrical Characteristic Analysis

3.3. Results and Discussion

3.3.1 The physical characteristics of SONOS-TFT with multiple nano-wire channels

3.3.2 The Electrical Characteristics of SONOS-TFT with Multiple Nanowire Channels

3.4. Summary I

Figures

Chapter4 Nonvolatile Ni-Silicide Nanocrystals Memory

4.1. Motivation

4.2. Experimental Procedures

4.3. Results and Discussion

4.3.1 Electrical Characteristics

4.3.2 Physical Characteristics

4.3.3 Advanced Electrical Characteristics

4.4. Summary II

Figures

Chapter5 Conclusions

5.1. Conclusions

References
參考文獻 References
References
Chapter 1
[1.1] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, p. 504 (1981)
[1.2] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., 46, 1288 (1967).
[1.3] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[1.4] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[1.5] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE circuits & devices, 16, 22 (2000).
[1.6] H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).
[1.7] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
[1.8] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Lett., 18, 278 (1997).
[1.9] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).
[1.10] Barbara De Salvo, Cosimo Gerardi, Rob van Schaijk, “Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps”, IEEE TRANS. ON DEVISE AND MATERIALS RELIABILITY, VOL. 4, NO. 3, SEPTEMBER 2004.
[1.11] White MH, Adams D, Bu J. On the Go with SONOS. IEEE Circ Dev Mag 2000;16(4):22.
[1.12] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Fromeer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell”, IEEE Electron Device Lett., vol. 21, pp. 543–545, Nov. 2000.
[1.13] Y. Yang, A. Purwar, and M. H. White, Solid-State Electronics, 43, 2025, (1999).
[1.14] M. She, T. J. King, C. Hu, W. Zhu, Z. Luo, J. P. Han, and T. P. Ma, “JVD silicon nitride as tunnel dielectric in p-channel flash memory”, IEEE Electr. Device Lett., 23, 91 (2002).
[1.15] H. Reisinger, M. Franosch, B. Hasler, and T. Bohm, Symp. on VLSI Tech. Dig., 9A-2, 113 (1997).
[1.16] B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell”, IEEE Electr. Device Lett., 21, 543 (2000).
[1.17] M. L. French, C. Y. Chen, H. Sathianathan, and M. H. White, IEEE Transactions on Components, Packaging, and Manufacturing Technology, 17, 390 (1994).
[1.18] M. H. White and Y. Yang, “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Trans. Comp., Pkg and Mfg. Tech., vol. 20, p.190 1997
[1.19] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and Doug Buchanan, IEDM Tech. Dig., p.521 (1995)
[1.20] J De Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotechnol, 2002.
[1.21] Liu, Z. Lee, C. Narayanan, V. Pei, G. Kan, “Metal nanocrystal memories. I. Device design and fabrication”, IEEE Trans. vol49, Sep 2002
[1.22] K. K. Likharev, “Single-electron devices and their applications”, Proc.
IEEE, vol. 87, pp. 606–632, Apr. 1999.
[1.23] R. Ohba, N. Sugiyama, K. Uchida, J. Koga, and A. Toriumi, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots”, in IEDM Tech. Dig., 2000, pp. 313–316.


Chapter 2
[2.1] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
[2.2] M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, (1991) ch. 3, p.59.
[2.3] S. M. Sze, J. Appl. Phys. 38, 2951 (1967).
[2.4] Min She, “Semiconductor Flash Memory Scaling”.
[2.5] Marvin H. White, Yang (Larry) Yang, Ansha Purwar, and Margaret L. French, “A Low Voltage SONOS Nonvolatile Semiconductor Memory Technology”, IEEE, VOL.20, NO. 2, JUNE 1997
[2.6] J. Bu, M. H. White, Solid-State Electronics., 45, 113 (2001)
[2.7] M. L. French, M. H. White., Solid-State Electron., p.1913 (1995)
[2.8] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White., IEEE Trans Comp
Pack and Manu Tech part A., 17, 390 (1994)
[2.9] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, IEDM Tech. Dig., p.19 (1993)
[2.10] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Transactions of Electron Devices., 49, 1606 (2002)
[2.11] J. Moll, Physics of Semiconductors. New York: McGraw-Hill, (1964)
[2.12] M. Lezlinger and E. H. Snow, J. Appl. Phys., 40, 278 (1969)
[2.13] Christer Sevensson and Ingemar Lundstrom, J. Appl. Phys., 44, 4657 (1973)
[2.14] P. E. Cottrell, R. R. Troutman, and T. H. Ning, IEEE J. Solid-State Circuits, 14, 442 (1979)
[2.15] San, K.T.; Kaya, C.; Ma, T.P.; “Effects of erase source bias on flash EPROM device reliability” Electron Devices, IEEE Transactions on Volume 42, Issue 1, Jan. 1995 Page(s):150-159
[2.16] Steve S. Chung, Cherng-Ming Yih, Shui-Ming Cheng, and Mong-Song Liang, “A New Technique for Hot Carrier Reliability Evaluations of Flash Memory Cell After Long-Term Program/Erase Cycles”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 46, NO. 9, SEPTEMBER 1999 1883
[2.17] Suk-Kang Sung, I1-Han Park, Chang Ju Lee, Yong Kyu Lee, Jong Duk Lee, Byung-Gook Park, Soo Doo Chae, and Chung Woo Kim, ”Fabrication and Program/Erase Characteristics of 30-nm SONOS Nonvolatile Memory Devices, ” IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL.2, NO.4, DECEMBER 2003
[2.18] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
[2.19] J. De Blauwe, M. Ostraat, M. Green, G. Weber, T. Sorsch, A. Kerber, F. Klemens, R. Cirelli, E. Ferry, J. L. Grazul, F. Baumann, Y. Kim, W. Mansfield, J. Bude, J. T. C. Lee, S. J. Hillenius, R. C. Flagan, and H. A. Atwater, “A novel, aerosol-nanocrystal floating-gate device for nonvolatile memory applications”, in IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., 2000, pp. 683–686.
[2.20] H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nanocrystal memory”, IEEE Trans. Electron Devices, vol. 43, pp. 1553–1558, Sept. 1996.
[2.21] Y.-C. King, T.-J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-x Ge ,” IEEE Trans. Electron Devices, vol. 48, pp. 696–700, Apr. 2001.
[2.22] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo, Applied Physics Letters., 77, 1182 (2000)
[2.23] Likharev KK. “Riding the crest of a new wave in memory NOVORAM”, IEEE Circuits & Devices Magazine, vol.16, no.4, pp.16-21, 2000.
[2.24] Lee, J.J.; Wang, X.; Bai, W.; Lu, N.; Lni, J.; Kwong, D.L, “Theoretical and experimental investigation of Si nanocrystal memory device with hfO 2 high-k tunneling dielectric”, Symposium on VLSI Technology, Digest of Technical Papers, pp.33-34, 2003.


Chapter 3
[3.1] K. Yoneda, R. Yokoyama, and T. Yamada, in Proc. Symp. VLSI Circuits, pp. 85 (2001)
[3.2] H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai, and H. Nagata, “Low power consumption TFT-LCD with dynamic memory embedded in pixels”, in Proc. SID, 2001, pp. 280–283.
[3.3] H. Kimura, T. Maeda, T. Tsunashima, T. Morita, H. Murata, S. Hirota, and H. Sato, “A 2.15 inch QCIF reflective color TFT-LCD with digital memory on glass (DMOG)”, in Proc. SID, 2001, pp. 268–270.
[3.4] M. Senda, Y. Tsutsui, R. Yokoyama, K. Yoneda, S. Matsumoto, and A. Sasaki, “Ultra-low-power polysilicon AMLCD with full integration”, in Proc. SID, 2002, pp. 790–793.
[3.5] S. I. Hsieh, H. T. Chen, Y. C. Chen, C. L. Chen, and Y. C. King, IEEE Electron Device Lett., vol. 27, no. 4, pp. 272 (2006)
[3.6] Y. C. Wu, C. Y. Chang, T. C. Chang; P. T. Liu, C. S. Chen, C. H. Tu, H. W. Zan, Y. H. Tai and S. M. Sze, in IEDM Tech. Dig., pp. 777 (2004)


Chapter 4:
[4.1] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Tran. Electron Devices, 49, 1606 (2002)
[4.2] Shaoyun Huang, Souri Banerjee, and Shunri Oda, “C-V and G-V Measurements Showing Single Electron Trapping in Nanocrystalline Silicon Dot Embedded in MOS Memory Structure”, 686 ,p8.8.1 , Mat. Res. Soc. Symp. Proc. (2002)
[4.3] J. J. Lee, X. Wang, W. Bai, N. Lu, J. Liu, and D. L. Kwong, “Theoretical and Experimental Investigation of Si Nanocrystal Memory Device with HfO2 High-k Tunneling Dielectric”, p33-34, Symposium on VLSl Technology Digest of Technical Papers (2003)
[4.4] G. J. Huang and L. J. Chen,J. Appt. Phys. 74 (2), 15 July 1993
[4.5] D. N. Kouvatsos, V. L. Sougleridis, and A. G. Nassiopoulou, Appl. Phys. Lett. 82, 397 (2003).
[4.6] C. M. Compagnoni, D. Ielmini, A. S. Spinelli, A. L. Lacaita, C. Gerardi, L. Perniola, B. De Salvo, and S. Lombardo, “Program/erase dynamics and channel conduction in NC memories”, in IEDM Tech. Dig., 2003, pp. 549–552.
[4.7] Chang-Hee Cho, Baek-Hyun Kim, Tae-Wook Kim, and Seong-Ju Park, Nae-Man Park and Gun-Yong Sung, “Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film”, APPLIED PHYSICS LETTERS 86, 143107 (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.70.131
論文開放下載的時間是 校外不公開

Your IP address is 3.139.70.131
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code