Responsive image
博碩士論文 etd-0716107-111337 詳細資訊
Title page for etd-0716107-111337
論文名稱
Title
應用標準CMOS製程之一次可燒錄唯讀記憶體與直接頻率合成器實作
An OTP ROM Using a Standard Logic CMOS Process and The Application In a DDFS Implementation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-21
繳交日期
Date of Submission
2007-07-16
關鍵字
Keywords
標準CMOS製程、一次可燒錄唯讀記憶體、直接頻率合成器
Standard CMOS process, DDFS, OTP-ROM
統計
Statistics
本論文已被瀏覽 5696 次,被下載 0
The thesis/dissertation has been browsed 5696 times, has been downloaded 0 times.
中文摘要
本論文的第一部份提出一個應用標準CMOS製程之一次可燒錄唯讀記憶體,本設計提出利用標準CMOS製程,實現出一次寫入唯讀記憶體(OTP)。燒錄的方法是利用高電壓使閘極氧化層崩潰,造成電阻值的不同,並以此判斷內儲資料之二進位值。
第二部分則為直接數位頻率合成器實作,在此我們提出一種直接數位頻率合成器的設計,利用直線逼近1/4弦波的演算法,並且用查表法作補償,以節省製作成本又兼顧精準度,並利用第一部份所提出的一次可燒錄之唯讀記憶體,簡化查表法的製作並方便製作後的校正及微調。
Abstract
The first topic of this thesis presents a one-time programmable (OTP) ROM using a standard logic CMOS process. A high voltage is applied to the gate-oxide to breakdown the MOS in the ROM-cell. It results in a low resistance compared to that of unprogrammed cells. Therefore, we can realize an OTP ROM with this characteristic on a CMOS logic ASIC or SOC.
The second topic is a DDFS (Direct Digital Frequency Synthesizer) implementation. A straight-line approximation algorithm for sinusoid with compensation is adopted in the proposed DDFS such that the accuracy could be maintained and the cost is reduced. Most important of all, the proposed CMOS OTP ROM is employed as the sinusoidal look-up ROM table to simplify the ROM fabrication without any additional process step.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 概論 1
1.1 前言 1
1.2 文獻探討 2
1.3 論文大綱 3
第二章 應用標準CMOS製程之一次可燒錄唯讀記憶體 4
2.1 簡介 4
2.2 OTP ROM記憶單元電路與分析 5
2.3 整體OTP電路測試架構 9
2.3.1 記憶單元區塊電路 10
2.3.2 解碼器電路 11
2.3.3 感測放大器電路 12
2.3.4 輸出入控制電路 14
2.4 模擬結果 15
2.4.1 測試區塊電路模擬 15
2.4.2 解碼器電路模擬 16
2.4.3 感測放大器電路模擬 17
2.4.4 預計規格 20
2.5 佈局圖 20
2.6 晶片量測 22
2.6.1 測試區塊量測結果 22
2.6.2 記憶單元區塊量測結果 24
2.7 結論與討論 26
第三章 直接數位頻率合成器實作 30
3.1 簡介 30
3.2 電路架構與原理說明 30
3.2.1 直接數位頻率合成器電路 37
3.2.2 利用唯讀記憶體實現之低位元補償電路 40
3.3 模擬結果 42
3.3.1 數位部份模擬 42
3.3.2 類比部份模擬 43
3.3.3 整合模擬 43
3.3.4 預計規格列表 45
3.4 佈局圖與規格比較 45
第四章 結論與成果 47
4.1 結論與成果 47
4.2 未來展望 48
參考文獻 50
參考文獻 References
[1]
A. Yamagishi, M. Ishikawa, T. Tsujkahara, and S. Date, “A 2-V, 2-GHz low-power direct digital frequency synthesizer chip-set for wireless communication.” IEEE J. of Solid-State Circuits, vol. 33, no. 2, pp. 210-217, Feb. 1998.
[2]
S. Mortezapour, and E. F. F. Lee, “Design of low power ROM-less direct digital frequency synthesizer using nonlinear digital- to-analog converter,” IEEE J. of Solid-State Circuit, vol. 34, no. 10, pp. 1350-1359, Oct. 1999.
[3]
G. W. Kent, and N. H. Sheng, “A high purity, high speed direct digital synthesizer,” Proc. of 49th IEEE Inter. Frequency Control Symposium, pp. 207-211, 1995.
[4]
J. Wee, W. Yang, E. Ryou, J. Choi, S. Ahn, J. Chung, and S. Kim,“An antifuse EPROM circuitry scheme for filed programm- able repair in DRAM,” IEEE J. of Solid State Circuits, vol. 35, no. 10, pp. 1408-1414, Oct. 2000.
[5]
G. Zhang, C. Hu, P. Yu, S. Chiang, S. Eltoukhy, and E. Hamdy, “An electro-thermal model for metal-oxide-metal antifuses,” IEEE Trans. on Electron Devices, vol. 42, no. 42, pp. 1548-1558, 1995.
[6]
C. Shin, R. Lambertson, F. Hawley, F. Issaq, J. McCollum, E. Hamdy, H. Sakurai, H. Yuasa, Y. Yamaoka, T. Wada, and C. Hu, “Characterization and modeling of a highly reliable metal-to- metal antifuse for high-performance and high-density field- programmable gate arrays,” in Proc. of IEEE Int. Symp. on Reliability Physics Symposium, pp. 25-33, Apr. 1997.
[7]
J. Vankka, “Methods of mapping from phase to sine amplitude in direct digital synthesis,” in Proc. 1996 IEEE Int. Frequency Control Symp., pp.942-950, June 1996.
[8]
R. Larson, and S.-L. Lu, “Interpolation-based digital quadrature frequency synthesizer,” 13th Annual IEEE Inter. ASIC/SOC Conf., pp.48-52, 2000.
[9]
A. Bellaouar, M. S. O’brecht, A. M. Fahim, and M. I. Elmasry, “Low power direct digital frequency synthesizer for wireless communication,” IEEE J. of Solid-State Circuits, vol. 35, no. 3, pp. 385-390, March 2000.
[10]
K. I. Palomaki, and J. Niittylahti, “Direct digital frequency synthesizer architecture based on Chebyshev approximation,” in Proc. of IEEE Conf. on Signals, Systems and Computers 2000, vol. 2, pp. 1639-1643, Nov. 2000.
[11]
J. M. P. Langlois, and D. Al-Khalili, “ROM size reduction with low processing cost for digital frequency synthesis,” 2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, vol. 1, pp. 287-290, Aug, 2001.
[12]
C.-C. Wang, Y.-L. Tseng, H.-C. She, C.-C. Li and R. Hu, “13-bit resolution ROM-less direct digital frequency synthesizer based on a trigonometric quadruple angle formula,” IEEE, Trans. on VLSI Systems, vol. 12, no. 9, pp. 895-900, Sep. 2004.
[13]
J. Kim, and K. Lee, “3-transistor antifuse OTP ROM array using standard CMOS process,” 2003 Symp. on VLSI Circuits, Digest of Tech. Papers., pp. 239-242, June, 2003.
[14]
P. Candelier, N. Villani, J.P.Schoellkopf, and P. Mortini, “One time programmable drift antifuse cell reliability,” IEEE International Reliability Physics Symposium, pp. 169-173, 2000.
[15]
H.-K. Cha, J. Kim, and K. Lee, “A high-density 64k-bit one-time programmable ROM array with 3-transistor cell standard CMOS gateoxide antifuse,” IEEE J. of Semiconductor Technology and Science, vol. 4, no. 2, pp. 106-109 , Jun. 2004.
[16]
B. Kaczer, R. Degraeve, A. D. Keersgieter, K. V. d. Mieroop, V. Simons, and G. Groeseneken, “Consistent model for short- channel nMOSFET after hard gate oxide breakdown,” IEEE Transactions On Electron Decices, vol. 49, no. 3, pp. 507-513, Mar. 2002
[17]
M. A. Alam, B. Weir, J. Bude, P. Silverman, and D. Monroe, “Explanation of soft and hard breakdown and its consequences for area scaling,” in IEEE IEDM Tech. Dig., pp. 449-452, 1999.
[18]
J. M. P. Langlois, and D. Al-Khalili, “Novel approach to the design of direct digital frequency synthesizers based on linear interpolation,” IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 50, no. 9, pp. 567-578, Sep. 2003.
[19]
B.-D. Yang, J.-H. Choi, S.-H. Han, L.-S. Kim, and H.-K. Yu, “ An 800-MHz low-power direct digital frequency synthesizer with an onchip D/A converter,” IEEE J. of Solid State Circuits, vol. 39, no. 5, pp. 761-774, May 2004.
[20]
A. G. M. Strollo, D. De Caro, E. Napoli, and N.Petra, “High-speed direct digital frequency synthesizers in 0.25-pm CMOS,” in Proc. of IEEE Conf. on Custom Integrated Circuit, pp. 163-166, Oct. 2004.
[21]
F. F. Dai, W. Ni, S. Yin, and R. C. Jaeger, “A direct digital frequency synthesizer with fourth-order phase domain noise shaper and 12-bit current-steering DAC,” IEEE J. of Solid State Circuits, vol. 41, no. 4, pp. 839-850, Apr. 2006.
[22]
C.-C. Wang, C.-C. Huang, and G.-L. Jhuang, “A direct digital frequency synthesizer with CMOS OTP ROM,” International Symposium on Integrated Circuits 2007 (ISIC2007), Paper ID: conf103a84, accepted, Sep. 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.111.24
論文開放下載的時間是 校外不公開

Your IP address is 18.222.111.24
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code