Responsive image
博碩士論文 etd-0716107-232754 詳細資訊
Title page for etd-0716107-232754
論文名稱
Title
具鎢奈米點埋入之介電層在非揮發性記憶體 元件其製作及研究
Investigation and Fabrication of Nonvolatile Memory Devices with Tungsten Nanocrystals Embedded in Dielectric Layers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
160
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-12
繳交日期
Date of Submission
2007-07-16
關鍵字
Keywords
非揮發性記憶體、介電層、鎢奈米點
tungsten nanocrystals, nonvolatile memory, dielectric layers
統計
Statistics
本論文已被瀏覽 5743 次,被下載 1258
The thesis/dissertation has been browsed 5743 times, has been downloaded 1258 times.
中文摘要
傳統的非揮發性記憶體是利用複晶矽浮停閘(floating gate)作為載子儲存的單元,而在元件尺寸持續微縮下,此結構將面臨一些瓶頸。為了克服尺寸極限,近年來衍生出之奈米晶體非揮發性記憶體,即利用半導體或金屬奈米點作為電荷儲存的單元,可以減少穿隧氧化層的厚度,而不損失可靠性,進而降低操作電壓及操作速度增快。
在此論文中,將從鎢(W)金屬奈米點的製作方式出發,首先在穿隧氧化層上方沉積矽化鎢(W5Si3)薄膜,當試片經過高溫熱氧化後,金屬鎢成分會向下在靠近穿隧氧化層附近成核析出形成鎢奈米點,同時,成份矽則氧化成二氧化矽而將鎢奈米點包圍,使成為各自獨立的儲存單元。此外,在矽化鎢薄膜製備的過程中,通入載氣(O2或N2),研究鎢金屬奈米點在不同的介電層環境中的記憶效應以及可靠度分析。同時,本論文也討論額外的氧化矽薄膜沉積在矽化鎢表面對鎢金屬奈米點的形成機制,可以改善熱氧化的控制能力。厚的氧化矽薄膜可以有效地控制熱氧化條件,並且防止熱氧化造成的薄膜劣化。然而,過度的熱氧化會造成記憶窗口下降以及電性劣化,主要是因為部份的鎢金屬奈米點被氧化成含有金屬的介電材料。相比之下,我們亦將直接以同時濺鍍鎢及介電材料如二氧化矽(SiO2)或氮化矽(Si3N4)沉積載子儲存層的方式來形成鎢奈米點包圍在介電層中的結構做論述。再者,為調變鎢及矽兩者成份含量比例而直接由同時濺鍍沉積的製作也將於此論文中加以研究。此外,我們也針對鍺成份加入矽化鎢薄膜,對後續鎢金屬奈米點的記憶窗口以及電性做討論。
總之,由以上的鎢金屬奈米點的製作過程,我們可以得到不同的介電層對傳統的鎢金屬奈米點記憶體的影響、額外的氧化層對熱處理的影響、以及鍺成份對記憶效應的貢獻。
Abstract
In a conventional nonvolatile memory (NVM), charge is stored in a ploy-silicon floating gate (FG) surrounded by dielectrics. But, it will suffer some limitations for continued scaling of the device structure. Therefore, the nanocrystal nonvolatile memory devices have been investigated to overcome the limit of the conventional floating gate NVM in recently years. Nanocrystal charge storage offers several advantages, the main one being the potential to use thinner tunnel oxide without sacrificing nonvolatility. This is a quite attractive proposition since reducing the tunnel oxide thickness is a key to lowering operating voltage and/or increasing operating speeds.
In this thesis, we have fabricated tungsten (W) nanocrystals nonvolatile memory devices. A thin tungsten silicide (W5Si3) layer was deposited on tunnel oxide layer first. The following oxidation was performed in furnace system. The W element tends to segregate downward and precipitate on the tunnel oxide after thermal oxidation. In addition, the silicon element is oxidized into silicon dioxide surrounded tungsten nanocrystals. Also, the carrier gas, such as O2 and N2, were also added as the tungsten silicide deposition. The memory effect and the electrical reliability for W nanocrystals surrounded in different dielectric were also investigated in this study. In addition, the formation mechanism of W nanocrystals with additional silicon oxide capped on tungsten silicide was also investigated. The thicker silicon oxide can effectively control the thermal oxidation condition and prevent thin film degradation. However, the overall oxidation cause the memory window reduction and the electrical characteristics degradation, resulted from the partially oxidation of W nanocrystal to metal-incorporated dielectric. By contrast, we also demonstrated the structure that deposited the charge trapping layer by co-sputtered W and dielectric material as SiO2 or Si3N4 to directly form the W nanocrystal embedded in dielectrics. Besides, the W and Si directly deposited by co-sputtered to adjust the two elements contained ratio had investigated as well in this study. Furthermore, the memory effect and electrical characteristics for germanium (Ge) element incorporated W nanocrystal memory were also discussed. The additional storage element contributes the memory effect.
In summary, the memory effect for W nanaocrystal embedded in different dielectric, the effect of the thermal treatment for additional silicon oxide incorporation, and the contribution of the Ge element to the memory effect can be obtained from the fabrication of W nanocrystal memory were finished in this study.
目次 Table of Contents
Chapter 1 Introduction
1.1General Background -------------- 1
1.1.1SONOS Nonvolatile Memory Devices --------- 2
1.1.2Nanocrystal Nonvolatile Memory ------ 4
1.2Motivation ---------------------- 6
1.3Organization of This Thesis -------- 8
Chapter 2 Basic Principle of Nonvolatile Memory
2.1Introduction -------------- 14
2.2Basic Program/Erase Mechanisms --- 16
2.2.1Tunneling Injection ---------------- 16
2.2.2Hot-Election Injection --------------- 18
2.2.3Band to Band Assisted Hole Injection -- 19
2.3Basic Reliability of Nonvolatile Memory -19
2.3.1Retention ------------------- 20
2.3.2Endurance ------------------- 20
2.4Basic Physical Characteristic of Nanocrystals NVMs ---------- 20
2.4.1Quantum Confinement Effect -------- 20
2.4.2Coulomb Blockade Effect ------------- 21
Chapter 3 Formation of W-NCs Nonvolatile Memory
3.1Motivation -------------------- 28
3.2Experimental Procedures ------------ 30
3.3Results and Discussion -------------- 31
3.4Conclusions -------------------- 35
Chapter 4 Applications of Oxygen/Nitrogen-Incorporated W-NCs NVMs
4.1Motivation ------------------ 43
4.2Experimental Procedures ------------ 43
4.3Results and Discussion -------------- 45
4.4Conclusions ------------------- 49
Chapter 5 Comparison of W-NCs Embedded in Dielectric Layers
5.1ESCA Analyses of W-NCs Embedded in Dielectric Layers ---------- 63
5.2Effect of Capped Oxide for W-NCs Formation in Dielectric Layers ----------------- 67
5.2.1Capacitance-Voltage Characteristics---- 67
5.2.2Secondary Ion Mass Spectroscopy (SIMS) Analyses for Oxidized W-Si (O/N) Layers w/o Capped 20-nm-thick Oxide --------------------- 69
5.3Discussions of Non-ideal C-V Hysteresis of W-NCs Nonvolatile Memory ----------- 72
5.4Conclusions ------------------- 73
Chapter 6 W-doped SiO2/Si3N4 as Self-assembling Layers of W-NCs
6.1Motivation ----------------- 93
6.2Experimental Procedures ------------ 93
6.3Results and Discussion -------------- 94
6.4Conclusions ------------------- 97
Chapter 7 W-incorporated Si/Si1-xGex (x=0.5) as Self-assembling Layers of W-NCs
7.1Motivation --------------- 108
7.2Experimental Procedures ------------ 108
7.3Results and Discussion -------------- 110
7.4Conclusions ------------------ 115
Chapter 8 Conclusions
8.1Conclusions ------------------ 129
Chapter 9 Future Work ------------------ 132
References ------------------------ 134
Vitae ----------------------- 142
參考文獻 References
Chapter 1
[1.1] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, p. 504 (1981)
[1.2] D. Kahng, S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech. Journal., vol. 46, pp. 1288 (1967)
[1.3] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, vol. 1, pp. 72-77 (2002)
[1.4] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, pp. 52 (1996)
[1.5] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE Circuits & Devices Magazine., vol. 16, pp.22-31 (2000)
[1.6] H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, pp. 157 (1987)
[1.7] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 521-524 (1995)
[1.8] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Letters., vol. 18, pp. 278-280 (1997)
[1.9] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 115-118 (1998)
[1.10] Y. Yang, A. Purwar, and M. H. White, “Reliability considerations in scaled SONOS nonvolatile memory devices”, Solid-State Electronics, vol. 43, pp. 2025-2032 (1999)
[1.11] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O’Connell, and R. E. Oleksiak, “The variable threshold transistor, a new electrically alterable nondestructive read-only storage device”, presented at the Internat’l Electron Devices Meeting, 1967
[1.12] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and Doug Buchanan, IEDM Tech. Dig., p.521 (1995)
[1.13] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Letters., vol. 18, pp. 278-280 (1997)
[1.14] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transactions on Nanotechnology., vol. 1, no. 1, pp. 72-77 (2002)
[1.15] The International Technology Roadmap for Semiconductors (ITRS), Tables 28a, 28b (1999)

Chapter 2
[2.1] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells -An overview”, Proceedings of The IEEE, vol. 85, pp. 1248-1271 (1997)
[2.2] M. Woods, “Nonvolatile Semiconductor Memories: Technologies, Design, and Application”, C. Hu, Ed. New York: IEEE Press, ch. 3, pp.59 (1991)
[2.3] S. M. Sze, J. Appl. Phys., vol. 38, pp. 2951 (1967)
[2.4] Min She, “Semiconductor Flash Memory Scaling”
[2.5] Marvin H. White, Yang (Larry) Yang, Ansha Purwar, and Margaret L. French, “A Low Voltage SONOS Nonvolatile Semiconductor Memory Technology”, IEEE, vol. 20, no. 2 (1997)
[2.6] J. Bu, M. H. White, “Design considerations in scaled. SONOS nonvolatile memory devices”, Solid-State Electronics., vol. 45, pp. 113-120 (2001)
[2.7] M. L. French, and M. H. White, ”Scaling of multidielectric nonvolatile SONOS memory structures”, Solid-State Electron., vol. 37, pp.1913-1923 (1995)
[2.8] M. L. French, C. Y. Chen, H. Sathianathan, and M. H. White, ”Design and scaling of a SONOS multidielectric device for nonvolatile memory applications”, IEEE Trans. Comp. Pack and Manu Tech part A., vol. 17, pp. 390-397 (1994)
[2.9] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, ”A high capacitive-coupling ratio (HiCR) cell for 3V-only 64Mb and future flash memories”, IEDM Tech. Dig., pp.19-22 (1993)
[2.10] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, ”Metal nanocrystal memories- part I: device design and fabrication”, IEEE Transactions of Electron Devices., vol. 49, pp. 1606-1613 (2002)
[2.11] J. L. Moll, Physics of Semiconductors, New York: McGraw-Hill (1964)
[2.12] M. Lezlinger and E. H. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2”, J. Appl. Phys., vol. 40, no. 1, pp. 278-283 (1969)
[2.13] C. Sevensson and I. Lundstrom, “Trap-assisted charge injection in MNOS structures”, J. Appl. Phys., vol. 44, pp. 4657-4663 (1973)
[2.14] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFET’s”, IEEE J. Solid-State Circuits, vol. 14, pp. 442-455 (1979)
[2.15] K. T. San, C. Kaya, T. P. Ma, “Effects of erase source bias on flash EPROM device reliability”, Electron Devices, IEEE Transactions, vol. 42, issue 1, pp. 150-159 (1995)
[2.16] S. S. Chung, Cherng-Ming Yih, Shui-Ming Cheng, and Mong-Song Liang, “A New Technique for Hot Carrier Reliability Evaluations of Flash Memory Cell after Long-Term Program/Erase Cycles”, IEEE Transactions of Electron Devices, vol. 46, no. 9 (1999)
[2.17] Suk-Kang Sung, I1-Han Park, Chang-Ju Lee, Yong-Kyu Lee, Jong-Duk Lee, Byung-Gook Park, Soo-Doo Chae, and Chung-Woo Kim, ”Fabrication and Program/Erase Characteristics of 30-nm SONOS Nonvolatile Memory Devices”, IEEE Transactions on nanotechnology, vol. 2, no. 4 (2003)
[2.18] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of the IEEE, vol. 85, pp. 1248 (1997)
[2.19] J. De Blauwe, M. Ostraat, M. Green, G. Weber, T. Sorsch, A. Kerber, F. Klemens, R. Cirelli, E. Ferry, J. L. Grazul, F. Baumann, Y. Kim, W. Mansfield, J. Bude, J. T. C. Lee, S. J. Hillenius, R. C. Flagan, and H. A. Atwater, “A novel, aerosol-nanocrystal floating-gate device for nonvolatile memory applications”, in IEEE Int. Electron Devices Meeting (IEDM) Tech. Dig., pp. 683–686 (2000)
[2.20] H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nanocrystal memory”, IEEE Trans. Electron Devices, vol. 43, pp. 1553–1558 (1996)
[2.21] Y. C. King, T. J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-xGex,” IEEE Trans. Electron Devices, vol. 48, pp. 696–700 (2001)
[2.22] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo,”Quantum confinement in germanium nanocrystals”, Applied Physics Letters., vol. 77, pp. 1182-1184 (2000)
[2.23] K. K. Likharev, “Riding the crest of a new wave in memory NOVORAM”, IEEE Circuits & Devices Magazine, vol. 16, no. 4, pp. 16-21 (2000)
[2.24] J. J. Lee, X. Wang, W. Bai, N. Lu, J. Lni, D. L. Kwong, “Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectric”, Symposium on VLSI Technology, Digest of Technical Papers, pp. 33-34 (2003)
Chapter 3
[3.1] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication“, IEEE Tran. Electron Devices, vol. 49, pp. 1606 (2002)
[3.2] S. K. Samanta, W. J. Yoo, G. Samudra, E. S. Tok, L. K. Bera, and N. Balasubramanian, “Tungsten nanocrystals embedded in high-k materials for memory application”, Applied Physics Letters., vol. 87, Art. no. 113110 (2005)
[3.3] G. J. Huang, L. J. Chen, “Investigation of the oxidation kinetics of NiSi2 on (111) Si by transmission electron microscopy”, J. Appt. Phys., vol. 74, pp. 1001 (1993)
[3.4] T. C. Chang, P. T. Liu, S. T. Yan, and S. M. Sze, “Electron Charging and Discharging Effects of Tungsten Nanocrystals Embedded in Silicon Dioxide for Low-Voltage Nonvolatile Memory Technology”, Electrochemical and Solid-State Letters, vol. 8, pp.G71-G73 (2005)
[3.5] Jin-Kook Yoon, Kyung-Whan Lee, Sung-Jae Chung, In-Jin Shon, Jung-Mann Doh, and Gyeung-Ho Kim, “Growth kinetics and oxidation behavior of WSi2 coating formed by chemical vapor deposition of Si on W substrate”, Journal of Alloys and Compounds, vol. 420, pp. 199-206 (2006)
[3.6] Kee-Sun LEE, “Crystallization of Reactively Sputtered Amorphous Tungsten Nitride Film”, Jpn. J. Appl. Phys., Vol. 42, pp. 3368-3371 (2003)
[3.7] F. M. d'Heurle, “Diffusion-Reaction: The Oxidation of Silicides in Electronics and Elsewhere”, J. Phys. III France, vol. 5, pp.1707-1728 (1995)
[3.8] Yang (Larr) Yang, Marvin H. White, “Charge retention of scaled SONOS nonvolatile memory devices at elevated temperatures”, Solid-State Electronics, vol. 44, pp.949-958 (2000)

Chapter 4
[4.1] Kee-Sun LEE, “Crystallization of Reactively Sputtered Amorphous Tungsten Nitride Film”, Jpn. J. Appl. Phys., vol. 42, pp. 3368-3371 (2003)
[4.2] V. Ioannou-Sougleridis and A. G. Nassiopoulou, “Investigation of charging phenomena in silicon nanocrystal metal–oxide–semiconductor capacitors using ramp current–voltage measurements”, J. Appl. Phys., vol. 94, no. 6 (2003)
[4.3] C. Louro, A. Cavaleiro, S. Dub, P. Smid, J. Musil, and J. Vlcek, “The depth profile analysis of W-Si-N coatings after thermal annealing”, Surface and Coatings Technology, vol. 161, pp. 111-119 (2002)

Chapter 5
[5.1] C. Louro, A. Cavaleiro, and F. Montemor, “How is the chemical bonding of W-Si-N sputtered coatings?”, Surface and Coatings Technology 142-144, pp.964-970 (2001)
[5.2] C. D. Wagner, W. H. Riggs, C. E. David, J. F. Moulder, and G. E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation (1979)
[5.3] Jeong Soo Byun, Alfred Mak, Amy Zhang, Alex Yoon, Tong Zhang, Avgerinos Gelatos, Robert Jackson, Randhir Thakur, Sang-Yun Lee, and Hyoungsub Kim, “Effect of NH3 thermal treatment on an atomic layer deposited on tungsten films and formation of W–B–N”, J. Vac. Sci. Technol. B, vol. 21, no.4 (2003)
[5.4] G. S. Oehrlein and J. L. Lindstom, “Competitive reactions of fluorine and oxygen with W, WSi2, and Si surfaces in reactive ion etching using CF4/O2”, J. Vac. Sci. Technol. A, vol. 7, no. 3 (1989)
[5.5] C. Louro, A. Cavaleiro, S. Dub, P. Smid, J. Musil, and J. Vlcek, “The depth profile analysis of W-Si-N coatings after thermal annealing”, Surface and Coatings Technology, vol. 161, pp.111-119 (2002)
[5.6] Chun-Hao Tu, Ting-Chang Chang, Po-Tsun Liu, In-Jin Shon, Hsin-Chou Liu, Simon M. Sze, and Chun-Yen Chang, “Improved memory window for Ge nanocrystals embedded in SiON layer”, Applied Physics Letters., vol. 89, Art. No. 162105 (2006)
[5.7] Jin-Kook Yoon, Kyung-Whan Lee, Sung-Jae Chung, In-Jin Shon, Jung-Mann Doh, and Gyeung-Ho Kim, “Growth kinetics and oxidation behavior of WSi2 coating formed by chemical vapor deposition of Si on W substrate”, Journal of Alloys and Compounds, vol. 420, pp.199-206 (2006)
[5.8] Tuo-Hung Hou, Udayan Ganguly, and Edwin C. Kan, “Fermi-Level Pinning in Nanocrystal Memories”, IEEE Electron Device Letters, vol. 28, no. 2 (2007)

Chapter 6
[6.1] S. K. Samanta, W. J. Yoo, G. Samudra, E. S. Tok, L. K. Bera and N. Balasubramanian, “Tungsten nanocrystals embedded in high-k materials for memory application”, Applied Physics Letters., vol. 87, Art. No. 113110 (2005)
[6.2] V. Ioannou-Sougleridis and A. G. Nassiopoulou, “Investigation of charging phenomena in silicon nanocrystal metal–oxide–semiconductor capacitors using ramp current–voltage measurements”, J. Appl. Phys., vol. 94, no. 6 (2003)

Chapter 7
[7.1] V. Subramania, K. C. Saraswat, H. Hovagimian, and J. C. Mehlhaff, “Response surface optimization for high-performance solid-phase crystallized silicon-germanium thin film transistors”, Proceedings of SPIE, vol. 3014, pp. 127-132 (1997)
[7.2] Y. R. Xing, J. A. Wu and S. D. Yin, “Characteristics of oxides formed from a Si0.5Ge0.5 alloy”, Surface Science Letters, vol. 334, L705-L708 (1995)
[7.3] H. K. Liou, P. Mei, U. Gennser and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior”, Appl. Phys. Lett., Vol. 59, No. 10 (1991)
[7.4] E. W. H. Kan, C.C. Leoy, W.K. Choi, W.K. Chim, D.A. Antoniadis and E.A. Fitzgerald, “Formation of Nanocrystalline Germanium via Oxidation of Si0.54Ge0.46 for Memory Device Applications”, Singapore-MIT Alliance, 4 Engineering Drive 3, Singapore 117576 (2003)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code