Responsive image
博碩士論文 etd-0716109-185827 詳細資訊
Title page for etd-0716109-185827
論文名稱
Title
應用PZT進行A36鋼管在高溫下厚度即時量測之研究
A Study on A36 Steel Pipe On-Line Thickness Measurement Subjected to High-Temperature by Using PZT
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-24
繳交日期
Date of Submission
2009-07-16
關鍵字
Keywords
管線厚度量測、PZT感測器、GUI系統、波速修正曲線
GUI system, Thickness measurement, Modified wave velocity curve, PZT sensor
統計
Statistics
本論文已被瀏覽 5667 次,被下載 4270
The thesis/dissertation has been browsed 5667 times, has been downloaded 4270 times.
中文摘要
在多數基礎工業中,管線輸送扮演著重要的角色。但管線在長時間的使用後,會有被腐蝕的情形發生,當過度腐蝕時,會使管線內的運輸物質外洩,導致工安意外,故必須定期檢測管線之厚度。但許多管線皆於高溫環境下操作,欲偵測其厚度必須先停工待檢,以致造成龐大之停工損失,因此,針對高溫管線厚度之即時檢測是有必要的。
本研究將利用低成本的PZT(Pb(ZrxTi1-x)O3)感測器進行高溫管線厚度之即時檢測,PZT感測器既是發射器也是接收器。可耐高溫之PZT感測器直接以耐高溫之耦合劑黏貼於管壁上,利用脈衝使PZT感測器產生超音波往工作物件傳導,回傳的訊號由同一個PZT感測器接收並傳回自行設計之GUI(Graphic User Interface)系統計算,透過GUI系統可立即得知管壁厚度。此外,在高溫環境之下,波速會因溫度上升而有所變化,進而影響量取厚度的準確性。因此,本文利用A36鋼板與A36鋼管作為實驗試材,求取不同溫度時之波速,並結合不同試材之實驗結果模擬出高溫波速修正曲線,利用修正後之波速來計算管道厚度可減少計算厚度的誤差。實驗結果顯示若高溫之波速未經修正會造成管線厚度計算厚度較實際厚度大進而增加了危險性。故高溫時,波速修正是有必要性的。
關鍵字:PZT感測器,管線厚度量測,波速修正曲線,GUI系統
Abstract
The pipeline is playing an important role in industry nowadays. However, the inner wall of pipeline may suffer corrosion after a long service time. When excessive corrosion occurred, not only the transported material inside the pipe will let out but also serious accident may be induced. So, it’s necessary to monitor pipeline thickness regularly. Conventionally, since most piping systems were subjected to high-temperature working environments, hence if an operator intend to examine the thickness of a pipeline, the whole piping system need to be shutdown and resulted in financial losses. Therefore, to develop on-line thickness measurement technique for pipelines subjected to high-temperature working environment is indispensable.
  In this study, low-cost PZT sensors (Pb(ZrxTi1-x)O3), which can sustain high-temperature working environment, were used to execute the thickness measurements. A single PZT, which was bonded on the surface of a pipe as an actuator and a receiver simultaneously. Then, by utilizing the GUI(Graphic User Interface) system, which was designed in this study, the echo signal can be analyzed and the thickness of the pipe can be determined on-line and automatically. It is noted that the wave speed changed as environmental temperature increased. So, in this study, by using A36 steel plates and steel tubes as a specimens, a modified temperature versus wave velocity curve was proposed.. The experimental results showed that non-conservative thickness measurements will be obtained if modified wave speed was not adopted when working temperature increased.
keywords:Thickness measurement, PZT sensor, GUI system, Modified wave velocity curve.
目次 Table of Contents
目錄 i
表目錄 iii
圖目錄 v
摘要 viii
Abstract ix
第一章 緒論 1
1.1研究源起與目的 1
1.2文獻探討 3
1.3本文架構 6
第二章 實驗架構與方法 11
2.1研究方法 11
2.2實驗儀器簡介與用途說明 12
2.2.1實驗用PZT感測器 12
2.2.2耦合劑與背膠層 13
2.2.3加熱裝置與溫度計 14
2.2.4分厘卡與游標卡尺 15
2.2.5超音波脈衝發射接收儀與示波器 16
2.3實驗步驟 16
第三章 GUI系統之建構 37
3.1 GUI系統介面 37
3.2 GUI系統之建構 38
3.2.1 GUI系統之濾波器建構 38
3.2.2 GUI系統之訊號擷取原理 39
3.2.3示波器擷取的穩定度 42
3.2熱膨脹係數之決定 43
3.3圓管厚度膨脹之模擬 45
第四章 實驗結果與討論 58
4.1波速量測結果 58
4.2溫度對實驗的影響 59
4.3波速與溫度的關係 62
4.4厚度誤差率分析 65
第五章 結論與未來展望 78
5.1結論 78
5.2未來展望 79
參考文獻 81
附錄A GUI系統之程式碼 85
附錄B 不同溫度時A36鋼材理論厚度、量測週期與求得之波速 90
附錄C A36鋼材之波速與溫度的線性迴歸關係式 96
參考文獻 References
1.周卓明, (2003), “壓電力學”, 全華科技圖書股份有限公司, 台北市, 台灣.
2.鄭振東, (1989), “超音波工程”, 全華科技圖書股份有限公司, 台 北市, 台灣.
3.先寧公司, (2007) , http://www.sunnytec.com.tw/products/p1.asp
4.最佳化設計實驗室, (2005), “壓電感測元件簡介” , 元智大學, 中壢市, 台灣.
5.谷腰欣司, 趙中興譯, (2006), “感測器”, 全華科技圖書股份有限公司, 台北市, 台灣.
6.Frankensten, B., Hentschel, D., and Schubert, F., (2006), “Monitoring Network for SHM in Avionic Application”, ECNDT, Dresden Branch, Dresden, Germany.
7.Cuc, A., Giurgiutiu, V., Joshi, S., and Tidwell, Z., (2007), “Structural Health Monitoring with Piezoelectric Wafer Active Sensors for Space Applications”, AIAA Journal, Vol.45, No.12, pp.2838-2850.
8.Santoni, G.B., Yu, L., Xu, B., and Giurgiutiu, V., (2007), “Lamb Wave Mode Tuning of Piezoelectric Wafer Active Sensors for Structural Health Monitoring”, ASME Journal of Vibration and Acoustics, Vol.129, No.6, pp.752-762.
9.Harker, A.H., (1988), “Elastic Waves in Solids, British Gas”, Institute of Physics Publishing, Bristol, UK.
10.Jamoussi, A., (2005), “Robotic NDE: A New Solution for In-line Pipe Inspection”, 3rd MENDT-Middle East Nondestructive Testing Conference & Exhibition, Nov 27-30 ,Manama, Bahrain.
11.Fowler, K.A., Elfbaum, G.M., Smith, K.A., and Nelligan, T.J., (1997), “Theory and Application of Precision Ultrasonic Thickness Gaging”, Journal of Insight, NDTnet, Vol.2, No.10.
12.Olympus, (2006) ,
http://www.olympusndt.com/en/ndt-application/87-id.209715208.html
13.Chahbaz, A., Mustafa, V., and Hay, D.R., (1996), “Corrosion Detection in Aircraft Structures Using Guided Lamb Waves”, ASNT Fall Conference, Oct 14-18, Seattle, WA., U.S.A., Vol.1, No.11.
14.Alleyne, D.N., and Cawley P., (1992), “Optimization of Lamb Wave Inspection Techniques”, NDT_E International, Vol.25, No.1, pp.11-22.
15.Rose, J.L., (2001), “A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential”, Proceeding of the 7th ASME NDE Topical Conference, Apr 23-25, San Antonio, U.S.A, TX., NDE-Vol.20, pp.1-5.
16.Schubert, F., Frankenstein, B., Frohlich, K.J., Kuttner, M., Lamek, B., Izfp, F., Schwenkkros, D. J., Kerkhof, K., Petricevic, R., and Wurzburg, N.M., (2007), “Structure Health Monitoring of Industrial Piping Systems Based on Guided Elastic Waves”, DGZfP Jahrestagung 2007, May 14-16, Dresden, Germany., Vorträge32, Page 2.1.
17.Yu, L., Giurgiutiu, V., Cho, Y. and Pollock, P., (2007), “In-situ Multi-mode Sensing with Embedded Piezoelectric Wafer Active Sensors for Critical Pipeline Health Monitoring”, Proceedings of IMECE 2007:2007 ASME International Mechanical Engineering Congress, Nov 5-10, Seattle, WA., U.S.A.
18.Hu, N., Shimomukai, H., Fukunaga, H., and Su, Z., (2008), “Damage Identification of Metallic Structure Using A0 Mode of Lamb Waves”, Structural Health Monitoring, Vol.7, No.3, pp271-285
19.科鳴股份公司, (2006), http://superextech.myweb.hinet.net/
20.APC Internation Lab., (2006), http://www.americanpiezo.com/materials/choosing_apc.html
21.Laboratory for Active Materials and Smart Structure, (2008),http://www.me.sc.edu/Research/lamss/NV/HTML/L_first.html
22.陳永增, 鄧惠源, (1999), “非破壞檢測”, 全華科技圖書股份有限公司, 台北市, 台灣.
23.李昌崙, 楊旭光, 邱世明, 余秉憲, 林宜賢, 鄭錦文, (2004), “複合層板吸音材料之聲場模擬與數值分析”, 中華民國音響學會第十七屆學術研討會, 十一月十五日, 高雄縣, 台灣.
24.LAPIN, 潘南飛 譯, (2003), “工程統計”, 全威圖書有限公司, 台北縣, 台灣。
25.MatWeb材料參數網站, (2009), http://www.matweb.com/index.aspx.
26.Milton Arnold, 吳榮彬譯, (2003), “工程統計學原則與應用”, 美商麥格羅.希爾國際股份有限公司 台灣分公司, 台北市, 台灣。
27.高源清, (1996), “聲學漫談”, 牛頓出版股份有限公司, 台北市, 台灣。
28.艾昶宏, (2006), “超聲法量測某合金材料彈性模量溫度係數”, 華中科技大學學報(城市科學版), 第23卷, 第z2期.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code