Responsive image
博碩士論文 etd-0716110-134851 詳細資訊
Title page for etd-0716110-134851
論文名稱
Title
水下無人載具之免校正視覺伺服控制
Uncalibrated Visual Servo for the Remotely Operated Vehicle
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-30
繳交日期
Date of Submission
2010-07-16
關鍵字
Keywords
適應性控制、免校正視覺伺服
uncalibrated visual servo, adaptive control, SIFT
統計
Statistics
本論文已被瀏覽 5636 次,被下載 1655
The thesis/dissertation has been browsed 5636 times, has been downloaded 1655 times.
中文摘要
水下無人載具在執行作業如拍攝目標物時,會受洋流干擾而造成載具產生偏移。因此本研究將建構一以影像為基礎之免校正視覺伺服控制架構,使在未知目標物模型及攝影機參數下,以攝影機所拍攝之目標物影像,採用Scale Invariant Feature Transform (SIFT) 作為影像特徵萃取比對之方法,設計一適應性控制器。以此控制器之強健性,
克服對攝影機校正參數之誤差影響,並利用攝影機之pan-tilt 及zoom in/out 三種運動模式,使欲拍攝目標物維持於影像中心位置,達到影像追尋之目的。
Abstract
In this thesis, an image-based uncalibrated visual servo is proposed for image tracking tasks in highly disturbed environment, such as a remotely operated vehicle performing observing or investigation objects
under the influence of undersea current. For the conditions that the target model and the camera parameters are unknown, the control framework
applies the scale invariant feature transform (SIFT) to extract image features. Furthermore, a robust adaptive control law is implemented to overcome the effect caused by camera calibration parameters. Then by
using three different types of camera’s motion: pan, tilt, and zoom to maintain the target always at the central position on the image plane.
目次 Table of Contents
目錄 i
圖索引 iv
摘要 vii
Abstract viii
第一章前言 1
1.1 動機目的 1
1.2 文獻回顧 2
1.3 論文架構 5
第二章視覺伺服控制 7
2.1 以位置為基礎之視覺伺服 7
2.2 以影像為基礎之視覺伺服 9
2.3 複合式視覺伺服 10
2.4 免校正視覺伺服 10
第三章研究方法 12
3.1 控制架構 12
3.2 特徵萃取 13
3.2.1 尺度空間之極值偵測 13
3.2.2 特徵點篩選 17
3.2.2.1 移除低對比區域特徵點 17
3.2.2.2 移除邊緣特徵點 19
3.2.3 決定特徵點方向 21
3.2.4 建構特徵點描述向量 22
3.2.5 特徵匹配 23
3.2.6 Best -Bin- First (BBF) 24
3.3 攝影機動態模型 28
3.4 pixel-to-length ratio 30
3.5 控制器設計 31
3.5.1 回授線性化控制器 31
3.5.2 強健適應性控制器 33
3.6 攝影機變焦控制 38
3.7 系統控制流程 39
第四章系統模擬與分析 41
4.1 模擬裝置及場景 41
4.2 回授線性化控制器之系統模擬實驗 44
4.2.1 海流速度為定值之模擬實驗 44
4.2.2 海流速度為正弦之模擬實驗 47
4.3 強健適應性控制器之系統模擬實驗 51
4.3.1 海流速度為定值之模擬實驗 51
4.3.2 海流速度為正弦之模擬實驗 55
4.4 模擬實驗之驗證 58
第五章結論與未來展望 62
參考文獻 63
參考文獻 References
[1] S. Negahdaripour, X.Xu, and L. Jin, Direct estimation of motion from
sea floor images for automatic station-keeping of submersible
platforms, IEEE Journal of Oceanic Engineering, Vol. 24, July 1999.
[2] J. Sattar and G. Dudek, A boosting approach to visual servo-control of
an underwater robot, The 11th International Sympo., Springer Berlin /
Heidelberg, STAR 54, pp. 417-428, 2009.
[3] X. Cufi, R. Garcia, and P. Ridao, An approach to vision-based station
keeping for an unmanned underwater vehicle, IEEE/RSJ International
Conference on Intelligent Robots and System, 2002.
[4] R. L. Marks, H. H. Wang, M. J. Lee, and S. M. Rock, Automatic
visual station keeping of an underwater robot, OCEANS '94. 'Oceans
Engineering for Today's Technology and Tomorrow's Preservation.'
Proceedings, vol. 2, pp. 137-142, 1994.
[5] M. Caccia, Vision-based ROV horizontal motion control:
Near-seafloor experimental results, Control Engineering Practice, vol.
15, pp. 703–714, 2006.
[6] 李振偉,水下午人載具之視覺伺服懸停控制,國立中山大學機械
工程碩士論文,中華民國九十七年七月。
[7] D.G. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.
[8] E. Malis, Survey of vision-based robot control, ENSIETA European
Naval Ship Design Short Course, Brest, France, 2002.
[9] S. Hutchinson, G. D. Hager, P. I. Corke, A tutorial on visual servo
control, IEEE Transactions on Robotics and Automation, vol. 12, No.
5, October 1996.
[10] F. Chaumette and S. Hutchinson, Visual servo Control, IEEE
Robotics and Automation Magazine 13, pp. 82-90, 2006
[11] P. K. Allen, A. Timcenko, Y. B., and P. Michelman, Automated
tracking and grasping of a moving object with a robotic hand-eye
system, IEEE Transactions on Robotics and Automation, vol. 9, pp.
152-165, April 1993.
[12] B. Thuilot, P. Martinet, L. Cordesses, and J. Gallice, Position based
visual servoing: keeping the object in the field of vision, IEEE
International Conference on Robotics and Automation, pp.
1624-1629, May 2002.
[13] W. Wilson, C. Hulls, and G. Bell, Relative end-effector control using
Cartesian position based visual servoing, IEEE Transactions on
Robotics and Automation, vol.12, pp. 684-696, Oct. 1996.
[14] P. Martinet, N.Daucher, J. Gallice, and M. Dhome, Robot control
using monocular pose estimation, In Workshop on New Trands In
Image-based Robot servoing (IROS’97), pp. 1-12, Grenoble, France,
Sep. 1997.
[15] B. Espiau, F. Chaumette, and P. Rives, A new approach to visual
servoing in robotics, IEEE Transaction on Robotics and Automation,
vol. 8, pp.313-326, June 1992.
[16] K. Hashimito, T. Kimoto, T. Ebine, and H. Kimura, Manipulator
control with image-based visual servo, IEEE International
Conference on Robotics and Automation, vol. 3, pp. 2267-2271,
Sacramento, California, USA, April 1991.
[17] J. Feddema and O. Mitchell, Vision-guided servoing with
feature-based trajectory generation, IEEE Transactions on Robotics
and Automation, vol. 5, pp. 691-700, Oct. 1989.
[18] F. Chaumette, Visual servoing using image features defined upon
geometrical primitives, In Proc. 33rd Conference on Decision and
Control, pp.3782-3787, IEEE, 1994.
[19] E. Malis, F. Chaumette, 2 1/2 D visual servoing with respect to
unknown objects through a new estimation scheme of camera
displacement, International Journal of Computer Vision, vol. 37, pp.
79-97, June 2000.
[20] A. Ruf, M. Tonko, R. Horaud, H.-H. Nagel, Visual tracking of an
end-effector by adaptive kinematic prediction, IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp.
893-898, 1997.
[21] E. Malis, Visual servoing invariant to changes in camera intrinsic
parameters, International Conference on Computer Vision,
Vancouver, Canada, vol. 1, pp. 704-709, July 2001.
[22] J. A. Piepmeier, G. V. McMurray, H. Lipkin, Uncalibrated dynamic
visual servoing, IEEE Transactions on Robotics and Automation, vol.
20, pp. 143-147, 2004.
[23] Y. H. Liu, H. S. Wang, C. Y. Wang, and K. K. Lam, Uncalibrated
visual servoing of robots using a depth-independent interaction
matrix, IEEE Transactions on Robotics, vol. 22, No. 4, Aug. 2006.
[24] J. A. Piepmeier, H. Lipkin, Uncalibrated eye-in-hand visual servoing,
The International Journal of Robotics Research, vol. 22, pp.805-819,
Oct. 2003.
[25] M. Spratling and R. Cipolla, Uncalibrated visual servo, In Proc.
British Machine Vision Conf., vol. 2, pp.545-554, Edinburgh, 1996.
[26] D.G.Lowe, Object recognition from local scale-invariant features,
International Conference on Computer Vision, pp. 1150-1157, 1999.
[27] S. Se, D. Lowe, and J. Little, Mobile robot localization and mapping
with uncertainty using scale-invariant visual landmarks,
International Journal of Robotics Research, vol. 21, No. 8, pp.
735-758, August 2002.
[28] W. Xiong, J. C.-M Lee, Efficient scene change detection and camera
motion annotation for video classification, Computer Vision and
Image Understanding, vol. 71, pp. 166-181, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code