Responsive image
博碩士論文 etd-0716110-213111 詳細資訊
Title page for etd-0716110-213111
論文名稱
Title
熱可塑鎂基塊狀金屬玻璃之微成型功能性研究
Study on Micro-Forming Workability of Thermoplastic Mg-Based Bulk Metallic Glasses
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
148
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-14
繳交日期
Date of Submission
2010-07-16
關鍵字
Keywords
非晶質、第二模具、金屬玻璃、熱成型
Amorphous, Bulk metallic glass, Thermoplastic forming, Secondary mold
統計
Statistics
本論文已被瀏覽 5628 次,被下載 0
The thesis/dissertation has been browsed 5628 times, has been downloaded 0 times.
中文摘要
隨著科技的發展,如微機電系統、顯示器元件與生物醫療產品等,帶動了微小化元件的需求量,使元件加工尺寸要求向下探至奈米等級。現今,微光刻電鑄模造技術(LIGA,譯至德文Lithographie, Galvanoformung, and Abformung),乃一常見的微小化加工技術,可製造出多變化圖樣且具高深寬比的微結構,精度可達一微米以下。其主要技術包含:光刻、電鍍與模造。微結構主要是靠電鍍製程將金屬沈積而成,因此電鍍材料選用有其限制所在。再者,光刻製程需要高能量的X光以光刻出高深寬比的光阻結構,故需利用同步輻射設備產生具高能量的X光,因此提高了製程的費用。
金屬玻璃為二十世紀末發展出來的新興材料,由於它是缺乏結晶、無晶格界線且無差排的結構,造就了具單相且均質特性的非晶質合金。因此,金屬玻璃結構可小至原子等級,是微小化製程的另一種材料選擇。與同種純金屬比較,具備高強度、高硬度、高拉伸極限與高抗腐之特性。再者,在過冷液相區(材料玻璃轉換溫度與結晶溫度之間),其極佳的可加工性與可壓印能力特性已經在近來受到矚目與研究。
由於輕量型鎂基非晶質合金具良好之玻璃成型能力(Glass forming ability),可達元件輕量化與製程簡單化之優點。故本文除探討LIGA技術外,提出另一創新製程,結合UV-LIGA與金屬玻璃可熱塑性特性製作微結構,探討鎂銅釔(Mg58Cu31Y11)金屬玻璃之熱成型性與用於壓印材料的可能性。首先,利用電鍍技術製作具高硬度之鎳鈷合金模具,再由熱壓印方法,熱壓溫度設定在約150 oC,將鎳鈷模具上的微結構轉印到鎂基非晶質合金,可形成第二模具。就成型能力而言,鎂銅釔金屬玻璃需要之壓印壓力較一般常用的壓印材料聚甲基丙烯酸甲酯(PMMA, Polymethylmethacrylate)低,故有較易壓印成型的特性。因此,鎂銅釔非晶質合金為一適合壓印加工且可快速成型的材料。
此外,以不同形狀與材料的模具轉印於鎂基非晶質合金,再次說明鎂銅釔非晶質合金的加工性。其一,利用溫度轉變造成硬度改變的特性,可將較軟之材料無氧銅(常溫下,硬度1.606 GPa)上的結構轉印到鎂銅釔金屬玻璃(常溫下,硬度3.445 GPa);其二,利用多道熱壓印方法,可將三角微陣列縮印至鎂銅釔金屬玻璃,以縮小原結構尺寸。最後,利用奈米壓痕系統測試鎂銅釔非晶質合金的機械性質,可供將來該材料應用於更小尺寸加工之參考。
Abstract
Advancements in technologies such as microelectromechanical systems (MEMS), display devices, biomedical products have created an increasing requirement for miniature components on the scale of micrometers to nanometers. Currently, a commonly used fabrication for miniaturization is LIGA (Lithographie, Galvanoformung, and Abformung). It is a reliably manufacturing method for high-aspect-ratio microstructures with a precision of less than one micrometer. The use of electroplating within LIGA techniques, however, limits the range of materials that can be used. But the main disadvantage of LIGA is its cost: high-energy X-rays generated by synchrotron equipment.
The homogeneous and isotropic characteristics of amorphous bulk metallic glasses (BMGs) due to the absence of crystallites, grain boundaries and dislocations lead to the scale of the metallic-glass structures can be miniaturized down to the atomic scale, which presents very high strength, hardness, elastic strain limit and corrosion resistance. In addition, the excellent workability and surface printability in the supercooled liquid state (the region defined from the glass transition temperature (Tg) to the crystallization temperature (Tx) of BMG) has been considered to be one of the most attractive properties of BMGs.
The lighter Mg-based metallic glasses exhibit their superior glass forming ability (GFA). Consequently, the using of Mg-based BMGs can gain the goals of light devices and simplify manufacturing process. In this study, therefore, besides the study of LIGA process, a new process utilize the thermoplastic properties of BMGs is presented. First, UV (ultraviolet) -LIGA, a more economical process than LIGA, is used to fabricate the master mold with nickle-cobalt (Ni-Co) alloy. Then, this mold is applied to hot emboss on Mg58Cu31Y11 amorphous alloy to form a secondary mold. The hot embossing temperature is set at 423 K (150 oC) according to the Tg of the BMG around 413 K (140 oC). This embossing process shows that the thermoplastic forming ability of the BMG material is better than Polymethylmethacrylate (PMMA) which requires high hot embossing pressure. BMG is not only a good material for hot embossing process to fabricate microstructure directly, but also a fast-forming material for mold (or die) fabrication.
On the other hand, other replicated-able moulds are presented to demonstrate the multifunctional ability of BMGs. First, a mold of oxygen free copper (OFC) with a very low hardness of 1.606 GPa, which is a popular material for machining due to its good machinability, is used to hot emboss on Mg58Cu31Y11 BMG with a higher hardness of 3.445 GPa. Second, micro triangular-pyramidal array (MTPA) on a tungsten (W) steel mold is transferred on Mg58Cu31Y11 BMG using this modified multi-step hot-embossing method to reduce the pattern size. In addition, scratch test with the Nano Indenter® XP system is used to study the mechanical behavior of the Mg58Cu31Y11 BMG for the application such as surface printability.
目次 Table of Contents
Content i
Table captions iv
Figure captions v
中文摘要 xiii
Abstract xv
Chapter 1 Introduction 1
1.1 General background 1
1.2 Metallic glass 3
1.3 Mg-based metallic glass 6
1.4 Concept of mold transformation 11
Chapter 2 Survey 13
2.1 Manufacturing of nano/micro structures 13
2.2 MEMS process 13
2.2.1 Mechanical precision manufacturing 13
2.2.2 Direct writing techniques 14
2.2.3 LIGA, LIGA-like process 16
2.3 Imprint 25
2.3.1 Nanoimprinting lithography 25
2.3.2 Hot embossing 25
2.4 Purpose of this work 28
Chapter 3 Theory and methodology 31
3.1 Theoretical analysis of scratch test 31
3.1.1 Prediction of forces in Berkovich scratch 31
3.1.2 Normal force on Berkovich 34
3.1.3 Tangential force on Berkovich 35
3.2 FEM simulation 37
3.2.1 Forming theorem of gapless hexagonal micro-lens 37
3.2.3 FEM pre-processor 41
3.3 Device design 43
3.3.1 Procedure of LIGA-like process 43
3.3.1.1 Gapless hexagonal lens mold 44
3.3.1.2 Dosage Estimation 45
3.3.2 Mechanical precision manufacturing 48
3.3.2.1 Aspheric lens mold 48
3.3.2.2 Triangular-pyramidal lens mold 49
Chapter 4 Results and discussions 51
4.1 Mechanical properties 51
4.1.1 Friction coefficient 51
4.1.2 Prediction of forces 52
4.1.3 Effect of scratch velocity 56
4.1.4 Effect of normal load 58
4.1.5 Effect of temperature 59
4.2 FEM simulation results 63
4.2.1 Thermoplastic forming behavior of Mg58Cu31Y11 BMG 64
4.2.2 Hot-embossing on Mg58Cu31Y11 BMG 65
4.3 Results of mold replicated 69
4.3.1 Gapless hexagonal lens replicated 70
4.3.1.1 Ni-Co mold 70
4.3.1.2 Mg58Cu31Y11 mold with hexagonal lens 75
4.3.1.3 PMMA sheet with hexagonal lens 80
4.3.1.4 Effect of coefficient of thermal expansion 83
4.3.2 Aspheric surface replicated 85
4.3.2.1 OFC aspheric lens mold 85
4.3.2.2 Hot embossing onto BMG 87
4.3.3 MTPA microstructures replicated 93
4.3.3.1 MTPA lens W-steel mold 93
4.3.3.2 One-stepped hot-embossing process 93
4.3.3.3 Multi-step hot-embossing process 100
4.3.3.4 Convex MTPA PMMA microstructures 101
Chapter 5 Conclusions 104
Reference 107
Appendix A 125
參考文獻 References
Chapter 1
[1.1] A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, “Self-assembly of nanoparticles into structured spherical and network aggregates,” Nature 404 (2000) 746-748.
[1.2] R. C. Hayward, D. A. Saville, and I. A. Aksay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature 404 (2000) 56-59.
[1.3] Z. Hou, H. Liu, X. Wei, J. Wu, W. Zhou, Y. Zhang, D. Xu, and B. Cai, “MEMS-based microelectrode system incorporating carbon nanotubes for ionization gas sensing,” Sensors and Actuators B 127 (2007) 637-648.
[1.4] W. Ehrfeld and H. Lehr, “Deep X-ray lithography for the production of three-dimensional microstructures from metals, polymers and ceramics,” Radiation Physics and Chemistry 45 (1995) 349-365.
[1.5] H. Yang, C. T. Pan and M. C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” Journal of Micromechanics and Microengineering 11 (2001) 94-99.
[1.6] Y. Cheng, B. Y. Shew, M. K. Chyu, and P. H. Chen, “Ultra-deep LIGA process and its applications,” Nuclear Instruments and Methods in Physics Research A 1192-1197 (2001) 467-468.
[1.7] S. Moon, N. Lee and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” Journal of Micromechanics and Microengineering 13 (2003) 98-103.
[1.8] S. Moon, S. Kang, and J. Bu, “Fabrication of polymeric microlens of hemispherical shape using micromolding,” Society of Photo-Optical Instrumentation Engineers 41 (2002) 2267-2270.
[1.9] D. H. Lewis Jr., S. W. Janson, R. B. Cohen, and E. K. Antonsson, “Digital micropropulsion,” Sensors and Actuators A: Physical 80 (2000) 143-154.
[1.10] M. Washizu and O. Kurosawa, “Electrostatic manipulation of DNA in microfabricated structures,” IEEE Transactions on Industry Applications 26 (1990) 1165-1172.
[1.11] C. T. Nguyen, L. P. Katehi, and G. M. Rebeiz, “Micromachined devices for wireless communications,” Proceedings of the IEEE 86 (1998) 1756-1768.
[1.12] F. Ayazi and K. Najafi, “High-aspect ratio combined poly and singlecrystal silicon (HARPSS) MEMS technology,” Journal of Microelectromechanical Systems 9 (2000) 288-294.
[1.13] L. J. Hornbeck, “Digital light processing and MEMS: An overview,” Advanced Applications of Lasers in Materials Processing, Broadband Optical Networks/Smart Pixels/Optical MEMS and Their Applications, IEEE/LEOS 1996 Summer Topical Meetings, pp. 7-8.
[1.14] A. Hossain and M. H. Rashid, “Force transducer using amorphous metglas ribbon,” IEEE Transactions on Industry Applications 26 (1990) 1158-1164.
[1.15] K. J. Rebello, “Applications of MEMS in surgery,” Proceedings of the IEEE 92 (2004) 43-55.
[1.16] S. Kagao, Y. Kawamura, and Y. Ohno, “Electron-beam welding of Zr-based bulk metallic glasses,” Materials Science and Engineering A 375-377 (2004) 312-316.
[1.17] T. Shoji, Y. Kawamura, and Y. Ohno, “Friction welding of bulk metallic glasses to different ones,” Materials Science and Engineering A 375-377 (2004) 394-398.
[1.18] Y. Kawamura, “Liquid phase and supercooled liquid phase welding of bulk metallic glasses,” Materials Science and Engineering A 375-377 (2004) 112-119.
[1.19] Y. Kawamura, T. Shoji, and Y. Ohno, “Welding technologies of bulk metallic glasses,” Journal of Non-Crystalline Solids 317 (2003) 152-157.
[1.20] R. Busch, E. Bakke, and W.L. Johnson, “Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy,” Acta Materialia 46 (1998) 4725-4732.
[1.21] A. Inoue, H. Horikiri, A. Kato, and T. Masumoto, “Upset deformation of amorphous Mg85Y10Cu5 alloy in an extended supercooled liquid region effectuated by rapid heating,” Materials Transactions, the Japan Institute of Metals 35 (1994) 79-82.
[1.22] A. Inoue, Y. Kawamura, T. Shibata, and K. Sasamori, ” Viscous flow deformation in supercooled liquid state of bulk amorphous Zr55Al10Ni5Cu30 alloy,” Materials Transactions, the Japan Institute of Metals 37 (1996) 1337-1341.
[1.23] Y. Saotome, K. Itoh, T. Zhang, and A. Inoue, “Superplastic nanoforming of Pd-based amprphous alloy,” Scripta Materialia 44 (2001) 1541-1545.
[1.24] J. P. Chu, H. Wijaya, C. W. Wu, T. R. Tsai, C. S. Wei, T. G. Nieh, and J. Wadsworth, “Nanoimprint of gratings on a bulk metallic glass,” Applied Physics Letters 90 (2007) 034101.
[1.25] P. Sharma, N. Kaushik, H. Kimura, Y. Saotome, and A. Inoue, “Nano-fabrication with metallic glass - an exotic material for nano-electromechanical systems,” Nanotechnology 18 (2007) 035302.
[1.26] J. Schroers, Q. Pham, and A. Desai, “Thermoplastic forming of bulk metallic - A technology for MEMS and microstructure fabrication,” Journal of Microelectromechanical Systems 16 (2007) 240-247.
[1.27] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Materialia 48 (2000) 279-306.
[1.28] O. N. Senkov, J. M. Scott, and D. B. Miracle, “Composition range and glass forming ability of ternary Ca-Mg-Cu bulk metallic glasses,” Journal of Alloys and Compounds 424 (2006) 394-399.
[1.29] R. Busch, W. Liu, and W. L. Johnson, “Thermodynamics an kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid,” Journal of Applied Physics 83 (1998) 4134-4141.
[1.30] H. S. Chen, “A method for evaluating viscosities of metallic glasses from the rates of thermal transformations,” Journal of Non-Crystalline Solids 27 (1978) 257-263.
[1.31] G. J. Fan, H. J. Fecht, and E. J. Lavernia, “Viscous flow of the Pd43Ni10Cu27P20 bulk metallic glass-forming,” Applied Physics Letter 84 (2004) 487-489.
[1.32] Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, “Stress overshoot in stress-strain curves of Zr65Al10Ni10Cu15 metallic glass,” Materials Transactions, the Japan Institute of Metals 40 (1999) 335-342.
[1.33] Y. C. Chang, T. H. Hung, H. M. Chen, J. C. Huang, T. G. Nieh, and C. J. Lee, “Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy,” Intermetallics 15 (2007) 1303-1308.
[1.34] M. Bakkal, A. J. Shih, and R. O. Scattergood, “Chip formation, cutting forces, and tool wear in turning of Zr-based bulk metallic glass,” International Journal of Machine Tools & Manufacture 44 (2004) 915-925.
[1.35] M. Bakkal, A. J. Shih, S. B. McSpadden, and R. O. Scattergood, “Thrust force, torque, and tool wear in drilling the bulk metallic glass,” International Journal of Machine Tools & Manufacture 45 (2005) 863-872.
[1.36] G. Yuan, T. Zhang, and A. Inoue, “Structure and mechanical properties of Mg85Cu5Zn5Y5 amorphous alloy containing nanoscale particles,” Materials Letters 58 (2004) 3012-3016.
[1.37] P. P′erez, G. Garc′es, F. Sommer, and P. Adeva, “Mechanical properties of amorphous and crystallised Mg-35 wt.% Ni,” Journal of Alloys and Compounds 396 (2005) 175-181.
[1.38] P. P′erez, M. Eddahbi, G. Garc′es, F. Sommer, and P. Adeva, “Mechanical properties of crystallised amorphous Mg-23.5Ni(wt%) alloy,” Scripta Materialia 50 (2004) 1039-1043.
[1.39] W. Y. Liu, H. F. Zhang, Z. Q. Hua, H. Wang, “Formation and mechanical properties of Mg65Cu25Er10 and Mg65Cu15Ag10Er10 bulk amorphous alloys,” Journal of Alloys and Compounds 397 (2005) 202-206.
[1.40] G. Yuan and A. Inoue, “The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys,” Journal of Alloys and Compounds 387 (2005) 134-138.
[1.41] Q. Zheng, S. Cheng, J.H. Strader, E. Ma, and J. Xu, “Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system,” Scripta Materialia 56 (2007) 161-164.
[1.42] U. Wolff, N. Pryds, and J.A. Wert, “Deformation characteristics of Mg60Cu30Y10 alloy at temperatures near Tg,” Scripta Materialia 50 (2004) 1385-1388.
[1.43] X. Li and B. Bhushan, ”Evaluation of fracture toughness of ultra-thin amorphous carbon coatings deposited by different deposition techniques,” Thin Solid Films 355-356 (1999) 330-336.
[1.44] S. Ducret, C. Pailler-Mattéi, V. Jardret, R. Vargiolu, and H. Zahouani, “Friction characterization of polymers abrasion (UHWMPE) during scratch test: single and multi-asperity contact,” Wear 255 (2003) 1093-1100.
[1.45] S. Mezlini, Ph. Kapsa, J. C. Abry, C. Henon, J. Guillemenet, “Effect of indenter geometry and relationship between abrasive wear and hardness in early stage of repetitive sliding,” Wear 260 (2006) 412-421.
[1.46] H. Kitsunai, K. Kato, and H. Inoue, “The transitions between microscopic wear mode during repeated sliding friction observed by a scanning electron microscope tribosystem,” Wear 135 (1990) 237–249.
[1.47] F. P. Bowden, A. J. W. Moore, and D. Tabor, “The ploughing and adhesion of sliding metals,” Journal of Applied Physics 14 (1943) 80-91.
[1.48] V. K. Gorana, V. K. Jain, and G. K. Lal, “Forces prediction during material deformation in abrasive flow machining,” Wear 260 (2006) 128-139.
[1.49] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Materialia 48 (2000) 279-306.
[1.50] X.-Y. Fu, T. Kasai, M. L. Falk, and D. A. Rigney, “Sliding behavior of metallic glass Part I. Experimental investigations,” Wear 250 (2001) 409-419.
[1.51] Y.-K. Xu, H. Ma, J. Xu, and E. Ma, “Mg-based bulk metallic glass composites with plasticity and gigapascal strength,” Acta Materialia 53 (2005) 1857-1866.
[1.52] B. Gun, K. J. Laws, and M. Ferry, “Static and dynamic crystallization in Mg-Cu-Y bulk metallic,” Journal of Non-crystalline Solids 352 (2006) 3887-3865.
[1.53] Osamu. Kohmoto, Kazuo. Ohya, and Teruhiko. Ojima, “Wear-resistant magnetic head using amorphous alloy material,” IEEE Transactions on Magnetics 25 (1989) 4490.
[1.54] Z. L. Long, Y. Shao, X. H. Deng, Z. C. Zhang, Y. Jiang, P. Zhang, B. L. Shen, and A. Inoue, “Cr effects on magnetic and corrosion properties of Fe-Co-Si-B-Nb-Cr bulk glassy alloys with high glass-forming ability,” Intermetallics 15 (2007) 1453-1458.
[1.55] Rex C. Y. Tam and C. H. Shek, “Abrasive resistance of Cu based bulk metallic glass,” Journal of Non-crystalline Solids 347 (2004) 268-272.
[1.56] C. Y. Tam and C. H. Shek, “Abrasive wear of Cu60Zr30Ti10 bulk metallic glass,” Material Science and Engineering A 384 (2004) 138-142.
[1.57] S. Liang, J.Y. He, W.Y. Chu, J.X. Li, D.B. Sun, L.J. Qiao, “Nanowear of a Zr Based bulk metallic glass/nanocrystalline alloy”, Transactions of Materials and Heat Treatment, Vol. 25, pp. 1195-1199, 2004.
[1.58] G. Q. Zhang, X. J. Li, M. Shao, L. N. Wang, J. L. Yang, L. P. Gao, L. Y. Chen, and C. X. Liu, “Wear behavior of a series of Zr-based bulk metallic glass,” Material Science and Engineering A 475 (2008) 124-127.
[1.59] R. Busch, E. Bakke, and W. L. Johnson, “Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass,” Acta Materialia 46 (1998) 4725-4732.
[1.60] G. Li, L. Wang, Z. Zhan, L. Sun, J. Zhang, and W. Wang, “The influence of structural relaxation on the mechanical properties of Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass,” Journal of Physics: Condensed Matter 14 (2002) 11077-11080.
[1.61] T. Gloriant, “Microhardness and abrasive wear resistance of bulk metallic glasses and nanostructured composite materials,” Journal of Non-crystalline Solids 316 (2003) 96-103.
[1.62] P. J. Blau and M. Walukas, “Sliding friction and wear of magnesium alloy AZ91D produced by two different methods,” Tribology International 33 (2000) 573-579.
[1.63] A. Inoue, T. Zhang, and T. Masumoto, “Glass-forming ability of alloys,” Journal of Non-Crystalline Solids 156-158 (1993) 473-480.
[1.64] A. Inoue, K. Ohtera, M. Kohinata, A. P. Tsai, and T. Masumoto, “Glass transition behavior of Al- and Mg-based amorphous alloys,” Journal of Non-Crystalline Solids 117-118 (1990) 712-715.
[1.65] A. Inoue, K. Ohtera, K. Kita, and T. Masumoto, “New amorphous Mg-Ce-Ni alloys with high strength and good ductility,” Japanese Journal of Applied Physics 27 (1988) L2248-L2251.
[1.66] Z. P. Lu, C. T. Liu, and Y. Li, “Glass transition and crystallization of Mg-Ni-Nd metallic glasses studied by temperature-modulated DSC,” Intermetallics 12 (2004) 869-874.

Chapter 2
[2.1] C.-C. A. Chen, C.-M. Chen, J.-R. Chen, “Toolpath generation for diamond shaping of aspheric lens array,” Journal of Materials Processing Technology 192-193 (2007) 194-199.
[2.2] M. Y. Yang, H. C. Lee, “Local material removal mechanism considering curvature effect in the polishing process of the small aspherical lens die,” Journal of Material Processing Technology 116 (2001) 298-304.
[2.3] Y. Takeuchi, S. Maeda, T. Kawai, K. Sawada, “Manufacture of multiple-focus micro Fresnel lenses by means of nonrotational diamond grooving,” Annals of the CIRP 51 (2002) 343-346.
[2.4] D. Dornfeld, S. Min, Y. Takeuchi, “Recent advances in mechanical micromachining,” Annals of the CIRP 55 (2006) 745-768.
[2.5] E. S. Lee and S. Y. Baek, “A study on optimum grinding factors for aspheric convex surface micro-lens using design of experiments,” International Journal of Machine Tools & Manufacture 47 (2007) 509-520.
[2.6] Y. T. Liu and Y. Yamagata, “Fabrication of aspheric surface using ultraprecision cutting,” Proceedings of the 5th National Conference on Precision Manufacture, 2006, pp. 287-303. [In Chinese]
[2.7] T. Kuriyagawa, M. S. S. Zahmaty, K. Syoji, “A new grinding method for aspheric ceramic mirrors,” Journal of Materials Processing Technology 62 (1996) 387-392.
[2.8] M. J. Chen, D. Li, S. Dong, “Research on a large depth-on-diameter ratio ultra-precision aspheric grinding system,” Journal of Materials Processing Technology 129 (2002) 91-95.
[2.9] H. S. Kim, E. J. Kim, B. S. Song, “Diamond turning of large off-axis aspheric mirrors using a fast tool servo with on-machine measurement,” Journal of Materials Processing Technology 146 (2004) 349-355.
[2.10] R. F. van Ligten, V. C. Venkatesh, “Diamond grinding of aspheric surfaces on a CNC 4-axis machining centre,” Annals of the CIRP 34 (1985) 295-298.
[2.11] Z. Zhong, V. C. Venkatesh, “Semi-ductile grinding and polishing of ophthalmic aspherics and spherics,” Annals of the CIRP 44 (1995) 339-342.
[2.12] V. C. Venkatesh, “Precision manufacture of spherical and aspheric surfaces on plastics, glass, silicon and germanium,” Current Science 84 (2003) 1211-1219.
[2.13] V. C. Venkatesh, S. Izman, P. S. Vichare, T. T. Mon, S. Murugan, “The novel bondless wheel, spherical glass chips and a new method of aspheric generation,” Journal of Materials Processing Technology 167 (2005) 184-190.
[2.14] M. Madou, Fundamentals of microfabrication, CRC-Press, Boca Raton, 1997, p. 52.
[2.15] S.-J. Yang, Study on fabrication of fused quartz nano-structures by focused ion beam, master thesis, National Sun Yat-sen University, 2008, p. 52. [In Chinese]
[2.16] C. J. Lee, J. C. Huang, T. G. Nieh, “Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass,” Applied Physics Letters 91 (2007) 161913.
[2.17] C. H. Chao, S. C. Shen, J. R. Wu, “Fabrication of 3-D submicron glass structures by FIB,” Journal of Materials Engineering and Performance 18 (2009) 878-885.
[2.18] R. Bruck, K. Hahn, and J. Stienecker, “Technology description methods for LIGA processes,” Journal of Micromechanics and Microengineering 5 (1995) 196-198.
[2.19] B. Chaudhuri, H. Guckel, J. Klein, and K. Fischer, “Photoresist application for the LIGA process,” Microsystem Technologies 4 (1998) 159-162.
[2.20] F. J. Pantenburg, J. Chlebek, A. El-Kholi, H. L. Huber, J. Mohr, H. K. Oertel, and J. Schulz, “Adhesion problems in deep-etch X-ray lithography by fluorescence radiation from the plating base,” Microelectronic Engineering 23 (1994) 223-226.
[2.21] A. El-Kholi, P.Bley, J. Gottert, and J. Mohr, “Examination of the solubility and the molecualr weight distribution of PMMA in view of an optimised resist system in deep etch X-ray lithography,” Microelectronic Engineering 21 (1993) 271-274.
[2.22] A. El-Kholi, J. Mohr, and V. Nazmov, “Study of properties of irradiated PMMA by the method of thin sections,” Nuclear Instruments and Methods in Physics Research A 448 (2000) 497-500.
[2.23] A. El-Kholi, J. Mohr, and R. Stransky, “Ultrasonic supported development of irradiated micro-structures,” Microelectronic Engineering 23 (1994) 219-222.
[2.24] J. Zanghellini, A. El-Kholi, and J. Mohr, “Development behaviour of irradiated microstructures,” Microelectronic Engineering 35 (1997) 409-412.
[2.25] P. Meyer, A El-Kholi, and J. Schulz, “Investigations of the development rate of irradiated PMMA microstructures in deep X-ray lithography,” Microelectronic Engineering 63 (2002) 319-328.
[2.26] C. M. Cheng and R. H. Chen, “Development behaviours and microstructure quality of downward-development in deep X-ray lithography,” Journal of Micromechanics and Microengineering 11 (2001) 692-696.
[2.27] V. Ghica and W. Glashauser, German Patent No. 3039110 (1982).
[2.28] V. Ghica and W. Glashauser, U.S. Patent No. 4393129 (1983).
[2.29] C. K. Malek and S. Yajamanyam “Evaluation of alternative development process for high-aspect-ratio poly(methylmethacrylate) microstructures in deep X-ray lithography,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18 (2000) 3354-3359.
[2.30] A. C. Henry, R.L. McCarley, S. Das, C. Khan Malek, and D.S. Poche, “Structural changes in PMMA under hard X-ray irradiation,” Microsystem Technologies 4 (1998) 104-109.
[2.31] J. Mohr, B. Anderer ,and W. Ehrfeld, “Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation,” Sensors and Actuators A: Physical 27 (1991) 571-575.
[2.32] E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Muenchmeyer, ”Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process),” Microelectronic Engineering 4 (1986) 35-56.
[2.33] Y. Cheng, N. Y. Kuo, and C. H. Su, “Dose distribution of synchrotron X-ray penetrating of low atomic numbers,” Review of Scientific Instrument 68 (1997) 2163-2166.
[2.34] G. Feiertag, W. Ehrfeld, H. Lehr, A. Schmidt, and M. Schmidt, “Calculation and experimental determination of the structure transfer accuracy in deep X-ray lithography,” Journal of Micromechanics and Microengineering 7 (1997) 323-331.
[2.35] J. Zanghellini, S. Achenbach, A. El-Kholi, J. Mohr and F. J. Pantenburg, “New development strategies for high aspect ratio microstructures,” Microsystem Technologies 4 (1998) 94-97.
[2.36] T. Beetz and C. Jacobsen, “Soft X-ray radiation-damage studies in PMMA using a cryo-STXM,” Journal of Synchrotron Radiation 10 (2003) 280-283.
[2.37] Marcia C. K. Tinone, K. Tanaka, J. Maruyama, N. Ueno, M. Imamura, and N. Matsubayashi, “Inner-shell excitation and site specific fragmentation of poly(methylmethacrylate) thin film,” Journal of Chemical Physics 100 (1994) 5988-5995.
[2.38] D. S. Kim, S. S. Yang, S. K. Lee, T. H. Kwon, and S. S. Lee, “Physical modeling and analysis of microlens formation fabricated by a modified LIGA process,” Journal of Micromechanics and Microengineering 13 (2003) 523-531.
[2.39] H. S. Lee, D. S. Kim, and T. H. Kwon, “A novel low temperature bonding technique for plastic substrates using X-ray irradiation,” Transducers, the 12th International Conference on Solid-State Sensors, Actuators and Microsystems, 2003, pp. 1331-1334.
[2.40] M. C. Chou, Deep X-ray lithography and low-stress high-hardness electroplating technologies for the micro structure, Dr. thesis, National Tsing Hua University, 2004, p. 7. [In Chinese]
[2.41] C. T. Pan, T. T. Wu, H.Y. Tsai, M. C. Chou, and T. C. Wu, “Fabrication of Micro-punching Head Using LIGA and Stacking Process,” Journal of Micromechanics and Microengineering 18 (2008) 095012.
[2.42] M. C. Chou, C. T. Pan, T. T. Wu, and T. C. Wu, “Study of deep X-ray lithography behavior for microstructures,” Sensors and Actuators A 141 (2008) 703-711.
[2.43] P. H. Chen, Microelectromechanical systems, Wu-Han culture enterprise, Taipei, 2001, p. 146. [In Chinese]
[2.44] M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, S. T. Wu, “A novel method to fabricate gapless hexagonal micro-lens array,” Sensors and Actuators A 118 (2005) 298-306.
[2.45] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Applied Physics Letters 67 (1995) 3114-3116.
[2.46] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” Journal of Vacuum Science & Technology B 14 (1996) 4129-4133.
[2.47] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution”, Science 272 (1996) 85-87.
[2.48] L. Guo, P. R. Krauss, and S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprint lithography,” Applied Physics Letters 71 (1997) 1881-1883.
[2.49] P. R. Krauss and S. Y. Chou, “Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe,” Applied Physics Letters 71 (1997) 3174-3176.
[2.50] H. Tan, A. Gilbertson, and S. Y. Chou, “Roller nanoimprint lithography,” Journal of Vacuum Science and Technology B 16 (1998) 3926-3928.
[2.51] Z. Yu, S. J. Schablitsky, and S. Y. Chou, “Nanoscale GaAs metal-semiconductor-metal photodetectors fabricated using nanoimprint lithography,” Applied Physics Letters 74 (1999) 2381-2383.
[2.52] J. Wang, X. Sun, L. Chen, and S. Y. Chou, “Direct nanoimprint of submicron organic light-emitting structures,” Applied Physics Letters 75 (1999) 2767-2769.
[2.53] M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20nm minimum feature size using nanoimprint lithography,” Applied Physics Letters 76 (2000) 673-675.
[2.54] J. Wang, X. Sun, L. Chen, L. Zhuang, and S. Y. Chou, “Molecular alignment in submicron patterned polymer matrix using nanoimprint lithography,” Applied Physics Letters 77 (2000) 166-168.
[2.55] W. Zhang and S. Y. Chou, “Multilevel nanoimprint lithography with submicron alignment over 4 in. Si wafers,” Applied Physics Letters 79 (2001) 845-847.
[2.56] S. Y. Chou, C. Keimel, and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature 417 (2002) 835-837.
[2.57] Z. Yu and S. Y. Chou, “Fabrication of large area subwavelength antireflection liftoff,” Journal of Vacuum Science & Technology B 21 (2003) 2874-2877.
[2.58] Z. Yu and S. Y. Chou, “Triangular profile imprint molds in nanograting fabrication,” Nano Letters 4 (2004) 341-344.
[2.59] M. D. Austin and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography,” Applied Physics Letters 84 (2004) 5299-5301.
[2.60] Y. C. Lee, C. H. Chen, and C. P. Liu, “A hybrid nano-imprinting lithography based on infrared pulsed laser heating,” Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006, pp.6-10.
[2.61] C. K. Malek, J. R. Coudevylle, J. C. Jeannot, and R. Duffait, “Revisiting micro hot-embossing with moulds in non conventional materials,” Microsystem Technology 13 (2007) 475-48.
[2.62] C. W. Hsieh, H. Y. Hsiung, Y. T. Lu, C. K. Sung, and W. H. Wang, “Fabrication of subwavelenght metallic structures by using a metal direct imprinting process,” Journal of Physics D: Applied Physics 40 (2007) 3440-3447.
[2.63] M. Takahashi, Y. Murakoshi, R. Maeda, and K. Hasegawa, “Large area micro hot embossing of Pyrex glass with GC mold machined by dicing,” Microsystem Technologies 13 (2007) 379-384.
[2.64] H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,”Sensors and Actuators A: Physical 83 (2000) 130-135.
[2.65] H. Becker and C. Gaertner, “Polymer based micro-reactors,” Reviews in Molecular Biotechnology 82 (2001) 89-99.
[2.66] C. T. Pan, T. T. Wu, S.C. Shen, M. C. Chou, and T. C. Wu, “Study of multi-step x-ray exposures to fabricate microstructure,” Sensors and Actuators A 156 (2009) 406–414.
[2.67] G. Wang, J. Shen, J. F. Sun, Y. J. Huang, J. Zou, Z. P. Lu, Z. H. Stachurski, and B. D. Zhou, “Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid region,” Journal of Non-Crystalline Solids 351 (2005) 209-217.
[2.68] A. V. Sergueeva, N. Mara, and A. K. Mukherjee, “Mechanical response of Zr-based metallic glass,” Journal of Non-Crystalline Solids 317 (2003) 169-175.

Chapter 3
[3.1] V. K. Gorana, V. K. Jain, and G. K. Lal, “On the effect of cutting forces and active grain density on surface roughness in abrasive flow machining,” International Journal of Machine Tools and Manufacture 44 (2004) 201-211.
[3.2] Zoran D. Popovic, Robert A. Sprague, and G. A. Neville Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics 27 (1988) 1281–1284.
[3.3] S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectronic Engineering 83 (2006) 1087–1090.
[3.4] Y. Cheng, B. Y. Shew, C. Y. Lin, and D. H. Wei, “Deep X-ray lithography developed at SRRC,” Proceeding of the National Science Council ROC(A) 23 (1999) 537-543.
[3.5] Y. Cheng, C. Y. Lin, D. H. Wei, Bernd Loechel, and Gabi Gruetzner, “Wall profile of thick photoresist generated via contact printing,” Journal of Microelectromechanical Systems 8 (1999) 18-26.
[3.6] Y. Cheng, B. Y. Shew, C. Y. Lin, D. H. Wei, and M. K. Chyu, “Ultra-deep LIGA process,” Journal of Micromechanics and Microengineering 9 (1999) 58-63.
[3.7] Y. Cheng, B. Y. Shew, C. H. Lin, and M. K. Chyu, “Concepts for creating ultra-deep trenches using deep X-ray lithography,” Sensors and Actuators 82 (2000) 205-209.

Chapter 4
[4.1] C. T. Pan, T. T. Wu, C.F. Liu, C.Y. Su, W. J. Wang, and J. C. Huang, “Study of scratching Mg-based BMG using nanoindenter with Berkovich probe,” Materials Science and Engineering: A 527 (2010) 2342–2349.
[4.2] C. T. Pan, T. T. Wu, Y. C. Chang, and J. C. Huang, “Experiment and simulation of hot embossing of bulk metallic glass with low pressure and temperature,” Journal of Micromechanics and Microengineering 18 (2008) 025010.
[4.3] J. Schroers, “The superplastic forming of bulk metallic glasses,” Journal of the Minerals, Metals & Materials Society 57 (2005) 34-38.
[4.4] C. T. Pan, T. T. Wu, M. F. Chen, Y. C. Chang, C. J. Lee, and J. C. Huang, “Hot embossing of micro-lens array on bulk metallic glass,” Sensors and Actuators A 141 (2008) 422-431.
[4.5] Z. P. Lu and C. T. Liu, “Glass Formation Criterion for Various Glass-Forming Systems,” Physical Review Letters 91 (2003) 115505.
[4.6] Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses,” Acta Materialia 50 (2002) 3501-3512.
[4.7] W. N. Myung, I. S. Hwang, H. Y. Bae, H. G. Kim, T. Masumoto, and A. L. Greer, “Viscous-flow behavior of amorphous Co69Fe4.5Nb1.5Si10B15 alloys,” Materials Science and Engineering A 304-306 (2001) 467-471.
[4.8] C. Y. Lin, “Study of the interface mechanical properties between thin-film Au and poly(methyl methacrylate),” master thesis, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, 2007. [In Chinese]
[4.9] John E. Sader and Raymond C. Sader, “Susceptibility of atomic force microscope cantilevers to later forces: Experimental verification,” Applied Physics Letters 83 (2003) 3195-3197.
[4.10] G. C. Papanicolaou, D. Bakos, and K. Imielinska, “Effect of interfacial phenomena on the thermal expansion behavior of rubber-toughened PMMA composites,” Journal of Macromolecular Science, Part B: Physics 37 (1998) 201-217.
[4.11] S. Manabe, R. Murakami, M. Takayanagi, and S. Uemura, “Glass-transition temperature and thermal expansion coefficient of a tow-phase system of polymers,” International Journal of Polymeric Materials 1 (1971) 47-73.
[4.12] C. T. Pan, T. T. Wu, Y. T. Liu, Y. Yamagata, J. C. Huang, “Fabrication of Aspheric Surface Using Ultraprecision Cutting and BMG Molding,” Journal of Materials Processing Technology 209 (2009) 5014–5023.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.23.123
論文開放下載的時間是 校外不公開

Your IP address is 3.145.23.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code