Responsive image
博碩士論文 etd-0716110-235811 詳細資訊
Title page for etd-0716110-235811
論文名稱
Title
單模摻鉻光纖之製程
Fabrication of Single-mode Cr-doped Fibers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-19
繳交日期
Date of Submission
2010-07-16
關鍵字
Keywords
抽絲塔、光纖、光纖放大器、摻鉻光纖
Cr-doped fiber, fiber amplifier, fiber, drawing tower
統計
Statistics
本論文已被瀏覽 5674 次,被下載 4
The thesis/dissertation has been browsed 5674 times, has been downloaded 4 times.
中文摘要
本研究為首次成功研製單模摻鉻光纖,藉由改良式管中棒預型體 (modified rod-in-tube)及使用光纖抽絲塔(drawing tower)技術製作超寬頻摻鉻光纖。
利用Cr4+:YAG晶體作為光纖纖芯材料及石英作為光纖纖殼材料,及使用雷射基座加熱生長法(LHPG methods),將長度為0.03m直徑為500 μm的Cr4+:YAG晶體,縮小直徑至290 μm,而長度增加為0.12 m,並搭配外徑20 mm內徑7 mm的石英管作為摻鉻光纖預型體,製作出纖芯直徑為6 μm,纖殼直徑為125 μm的單模摻鉻光纖。研製出的單模摻鉻光纖損耗量測為0.08 dB/cm,並由遠場圖案確定由1310 nm波長以上皆具有單模傳輸之特性。
為了解決預型體材料的間隙及纖芯幾何結構之問題,設計出新式管中棒預型體,將直徑500 μm長度為0.03 m的Cr4+:YAG晶體,放入石英毛細管內,並搭配符合毛細管外徑的鑽孔石英棒作為光纖預型體,製作出纖芯直徑為5 μm,纖殼直徑為125 μm的單模摻鉻光纖,本研究成功的將單模摻鉻光纖之損耗降低為0.03dB/cm的,同時也具有光通訊波段下單模傳輸之特性。
Cr3+與Cr4+之螢光頻譜分別展現800~1200 nm與1100 ~1600 nm之螢光特性,由於高頻寬的螢光特性,使單模摻鉻光纖可能具有發展成為低損耗波段單模光纖放大器,及作為高解析度光學斷層掃描器之寬頻光源之潛力。
Abstract
The fabrication of broadband single-mode Cr-doped silica fibers (SMCDSFs) using the fiber drawing-tower method with the modified rod-in-tube technique is demonstrated for the first time.
A preform was assembled by using the grown Cr:YAG rod as core and the silica tube as cladding. The outer and inner diameters of the silica tube are 20 and 7 mm, respectively. The initial dimension of the Cr:YAG crystal rod had a length of 0.03 m and a diameter of 500 μm. The Cr:YAG crystal was grown into a diameter of a 290 μm with a length of 0.12 m by the LHPG method. The SMCDSFs had a 6 μm core and a 125 μm cladding. The transmission loss was 0.08 dB/cm at 1550 nm. The far-field pattern measurements indicated the single-mode characteristic when the propagation wavelength was longer than 1310 nm.
In order to solve the interface of core and cladding, a novel rod-in-tube(RIT) perform was employed by inserting the Cr:YAG crystal rod of 0.03m length and 500 μm diameter into the silica capillary tube, which had the same diameter with the drilled silica rod. The single-mode Cr-doped fibers had successfully been fabricated and the loss had been reduced to 0.03 dB/cm at 1550 nm with a 5 μm core and a 125 μm cladding. Furthermore, the SMCDSFs also had the single-mode characteristic when they operated in the optical communication window.
The successful fabrication of SMCDSFs may be one step forward towards the achievement of utilizing the SMCDSFs as ultra-broadband fiber optical amplifiers to cover the bandwidths in the whole 1300 to 1600 nm range of low-loss and low-dispersion windows of silica fibers and a broadband source for enabling high resolution in optical coherence tomography (OCT).
目次 Table of Contents
內 容 目 錄

中文摘要
英文摘要
致謝
內容目錄 I
圖目錄 III
表目錄 VII
第一章 緒論 1
第二章 摻鉻晶體之特性 11
2.1 摻鉻晶體結構與特性 11
2.2 摻鉻晶體的能階模型與吸收及輻射頻譜 16
第三章 單模摻鉻光纖之製作 20
3.1 文獻探討 20
3.2 材料性質 24
3.3 抽絲塔製程之單模摻鉻光纖 27
3.3.1 預型體設計與製作 27
3.3.1.1 第一代單模摻鉻光纖預型體 27
3.3.1.2 第二代單模摻鉻光纖預型體 30
3.3.2 抽絲製程 34
第四章 單模摻鉻光纖之特性量測 48
4.1 單模摻鉻光纖之折射率量測 48
4.2 單模摻鉻光纖之遠場圖案量測 52
4.3 單模摻鉻光纖之損耗量測 57
4.4 單模摻鉻光纖之自發輻射頻譜 62
第五章 結論與討論 66
5.1 結論 66
5.2 討論 67
參考文獻 72
參考文獻 References
[1]Stamatios V. Kartalopoulos, “Optical bit error rate an estimation methodology,” John Wiley&Sons, p. 58, 2004.
[2]E. Desurvire, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” New York: Wiley, Ch. 4, 1994.
[3]J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electronics Letters 26, pp. 1645-1646, 1990.
[4]T. Sakamoto, S. Aozasa, M. Yamada and M. Shimizu, “High-gain hybrid amplifier consisting of cascaded fluoride-based TDFA and silica-based EDFA in 1458-1540 nm wavelength region,” Electronics Letters, Vol. 39, No. 7, pp. 597-599, Apr. 2003.
[5]Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel, Jr., “Pr3+-doped fluoride fiber amplifier operating at 1.31 μm,” Optics Letters 16, pp. 1747-1749, 1991.
[6]Michael J. Connelly, “Semiconductor Optical Amplifiers,” Kluwer Academic Press, 2002.
[7]M.N. Islam, “Raman amplifiers for telecommunications,” IEEE J. of Selected Topics in Quant. Electron., Vol. 38, No. 3, pp. 548-559, May/June 2002.
[8]T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass,” Appl. Phys. Lett., Vol. 84, pp. 3804-3806, 2004.
[9]S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” Journal of Crystal Growth, Vol. 183, pp. 614-621, 1998.
[10]C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S. Lin, and P.S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letters, Vol. 30, pp. 129-131, 2005.
[11]C.Y. Lo, K.Y. Huang, J.C. Chen, S.Y. Tu, and S.L. Huang, “Glass-clad Cr4+ :YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letters, Vol. 29, pp. 439-441, 2004.
[12]賴柏洲, “光纖通信與網路技術,” 全華圖書公司, Ch. 6, 2003.
[13]原榮, “光纖通訊系統原理與應用,” 新文京圖書公司, Ch. 7, 2004.
[14]S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett., Vol. 77, pp. 818-820, 2000.
[15]X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Optical Materials, Vol. 20, pp.63-72, 2002.
[16]C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett., Vol. 82, pp. 4035-4037, 2003.
[17]Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, H.M. Yang, M.T. Sheen, S.L. Huang, T.Y. Chang, and W.H. Cheng, “Fabrication of Cr-doped Fibers by Drawing Tower,” OFC, Anaheim, CA, OWI21, 2006.
[18]Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and W.H. Cheng, “Broadband emission from Cr-doped fibers fabricated by drawing tower,” Opt. Exp., Vol. 14, pp. 8492-8497, 2006.
[19]Y.C. Huang, J.S. Wang, Y.K. Lu, W.K. Liu, K.Y Huang, S.L. Huang, and W.H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers,” Opt. Exp., Vol. 15, pp. 14382-14388, 2007.
[20]U. Hommerich, X. Wu, and V. R. Davis, “Demonstration of room-temperature laser action at 2.5 m from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett., Vol. 22, pp. 1180-1182, 1997.
[21]S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev “CW and pulsed Cr2+:ZnS and ZnSe microchip laser ,” Technical Digest, Lasers and Electro-Optics, pp. 120-121, 2002.
[22]J. McKay, K. L. Schepler and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Optics Letters, Vol. 24, No. 22 pp. 1575-1577, 1999.
[23]Alexander A. Kaminskii, “Laser crystal,” 1st ed, Springer-Verlag Berlin Heidelberg New York, p. 241, 381, 382, 1981.
[24]Yen-Kuang Kuo, Man-Fang Huang, and Milton Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” J. of Quantum Electron., Vol. 31, No. 4, pp. 657-663, 1995.
[25]Takashi Fujii, Masahiro Nagano, and Koshichi Nemoto, “Spectroscope and laser oscillation characteristics of high Ce4+-doped forsterite,” J. of Quantum Electron., Vol. 32, No. 8, pp. 1497-1503, 1996.
[26]黃光瑤, “摻鉻釔鋁石榴石晶體光纖之超寬頻自發輻射放大光源之研製,” 碩士畢業論文, 國立中山大學, 2003.
[27]黃光瑤, “摻鉻釔鋁石榴石晶體光纖之生長系統改良與特性研究,” 博士畢業論文, 國立中山大學, 2008.
[28]李雅明, “固態電子學,” 全華圖書公司, Ch. 3, 1995.
[29]V. Felice, B. Dussardier, J. K. Jones, G. Monnom, D. B. Ostrowsky, “Chromium-doped silica optical fiber : influence of the core composition on the Cr oxidation states and crystal field,” Optical Material, vol. 16, p. 269, 2001.
[30]J.C. Chen, C.Y. Lo, K.Y. Huang, F.J. Kao. S.Y. Tu, and S.L. Huang, “Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers,” J. Crystal Growth, Vol. 274, pp. 522-529, 2005.
[31]C.C. Lai, H.J. Tsai, K.Y. Huang, K.Y. Hsu, Z.W. Lin, K.D. Ji, W.J. Zhuo, S.L. Huang, “Cr4+:YAG double-clad crystal fiber laser,” Opt. Lett., Vol. 33, pp. 2919-2921, 2008.
[32]Cr:YAG crystal rod, Fujian JDSU CASIX Inc., Fujian, China (2005).
[33]GE Quartz, Inc. www.ge.com/quartz.
[34]S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single-crystal fiber laser,” OSA Trends in Optics and Photonics, 34, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, eds. (Optical Society of America, Washington, DC), pp. 426-430, 2000.
[35]OFC 20操作手冊.
[36]EXFO-NR9200 操作手冊.
[37]Gerd Keiser, “Optical Fiber Communication,” Third Edition, mcgraw-Hill, 2000.
[38]S.O. Kasap, “Optoelectronics and photonics: principles and practices,” Prentice Hall, p.65, 2001.
[39]http://micro.magnet.fsu.edu/primer/index.html
[40]J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. Rao, M. Daw, S. Sharma, R. Shori, and O.Stafsudd, R. R. Rice, D. R. Powers, “Silicon Optical Fiber,” Optics Express, Vol. 16, No. 23, pp. 18675-18683, 2008.
[41]J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson,“ On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys., 105, 053110, 2009.
[42]陳建誠, “雙纖衣掺鉻釔鋁石榴石晶體光纖之螢光光譜研究,” 博士畢業論文, 國立中山大學, 2006.
[43]黃翊中, “抽絲塔研製超寬頻摻鉻光纖之製程與特性,” 博士畢業論文, 國立中山大學, 2008.
[44]吳俊德, “抽絲塔製程摻鉻光纖螢光動態特性之研究,” 碩士畢業論文, 國立中山大學, 2008.
[45]John Ballato and Elias Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” APPLIED OPTICS, 34, pp. 6848-6854, 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.93.210
論文開放下載的時間是 校外不公開

Your IP address is 3.145.93.210
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code