Responsive image
博碩士論文 etd-0716112-161948 詳細資訊
Title page for etd-0716112-161948
論文名稱
Title
適用於生醫植入系統之新型天線及人造覆層電磁結構設計
Designs of Novel Antennas and Artificial Electromagnetic Cover Layers for Medical Implant Communication Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-25
繳交日期
Date of Submission
2012-07-16
關鍵字
Keywords
植入式生醫設備、植入式天線、超穎材料
Implantable antenna, Implantable medical device (IMD), Metamaterial
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
於本論文中,我們設計了適用於植入式生醫系統的新型植入式天線,並且可搭配人造覆層電磁結構之超穎材料使用。當超穎材料設計的匹配層放置於體表,搭配我們設計之位於身體內部的植入式天線,即可提升天線的整體效能。
首先,我們提出了雙層及三層兩種植入式天線設計,該三層天線具備高容忍度、高增益、低姿態、尺寸小之特性,其增益為−21.7 dBi、輻射效率為0.2%,與目前植入式天線設計的文獻相比,具有較好的輻射增益,此外,該三層天線具有對環境的變化不敏感之特性,當環境介電常數大幅變化時其共振頻率僅有小幅的飄移。
接著引入阻抗匹配的概念,以超穎材料實現一適用於體表與空氣之間的匹配層。匹配層的應用可有效提升我們設計的植入式天線的效能,使三層天線增益增加1.23-5.2 dB。我們更進一步提出了一縮小化的設計,降低了匹配層的厚度,尺寸40×40×4mm³的匹配層可使天線增益增加1.64 dB,而尺寸60×60×4mm³的匹配層可使天線增益增加2.63 dB。
最後,我們提出一天線及超穎材料共設計的植入式天線,僅在加上超穎材料於體表後才可使天線共振於MICS頻帶,此一設計可藉由生醫設備的電路設計以偵測天線的反射量,而達到控制天線是否傳遞訊號的目地。
Abstract
In this thesis, we design novel implantable antennas for medical implant communication systems and it could operate with the metamaterial which is the artificial electromagnetic (EM) cover layer. The metamaterial based matching layer placed on the surface of the body can improve the performance of the implantable antenna.
First, we propose two layers and three layers antenna design. The three layers antenna features high tolerance, high gain, low-profile and miniaturization. The antenna achieves gain −21.7 dBi and efficiency 0.2%. Compared with other literatures of implanted antenna design, the proposed three layers antenna reveals the best gain with similar dimensions. Furthermore, its frequency response is insensitive to the change of the implanted environment.
The conception of impedance matching is applied to further improve the gain of the proposed antenna. The matching layers are realized by utilizing the metamaterial and it is placed between the body and the air. In this case, the gain of the three–layer antenna can be enhanced by 1.23–5.2 dB. Furthermore, we propose a size reduction technique to reduce the thickness of the matching layer. The miniature matching layers can increase the gain of the three–layer antenna by 1.64 dB and 2.63 dB with the dimension of 40×40×4mm³ and 60×60×4mm³ respectively.
Finally, we propose a co–design method of the antenna and metamaterial. The antenna will resonate after placing metamaterial on the surface of the body. So that we can control the antenna whether to transmit power or not by the circuit design in the biomedical device to detect the return loss of the antenna.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iv
Abstract v
目錄 vi
圖次 vii
表次 x
第一章 序論 1
1.1 研究動機及背景 1
1.2 研究方法 1
1.3 相關研究概況 2
1.4 論文大鋼 2
第二章 超穎材料簡介 3
2.1 超穎材料簡介 3
2.2 負介電係數之超穎材料 4
2.3 負導磁係數之超穎材料 5
第三章 植入式天線設計 7
3.1 模擬環境設定 7
3.2 雙層天線設計 9
3.3 雙層天線置於複雜人體中 12
3.4 高容忍度之三層天線設計 14
3.5 高容忍度之三層天線置於複雜人體中 20
3.6 量測與分析 22
第四章 超穎材料於提升植入式天線效能之應用 29
4.1 匹配層概念 29
4.2 匹配層單位晶胞設計 30
4.3 縮小化匹配層單位晶胞設計 34
第五章 植入式天線與超穎材料共設計 38
5.1 共設計結構 38
5.2 量測與分析 41
第六章 結論 45
參考文獻 46

參考文獻 References
[1] ITU, SA.1346: Sharing between the meteorological aids service and medical implant communication systems (MICS) operating in the mobile service in the frequency band 401–406 MHz, [Online]. Available: http://www.itu.int/rec/R-REC-SA.1346-0-199802-S/en
[2] Federal Communications Commission, FCC Encyclopedia, [Online]. Available: http://www.fcc.gov/encyclopedia/medical-device-radiocommunications-service-medradio
[3] ANSYS Inc., ANSYS HFSS, [online]. Available: http://www.ansys.com/Products/Simulation+Technology/Electromagnetics/High-Performance+Electronic+Design/ANSYS+HFSS
[4] Schmid & Partner Engineering AG (SPEAG), SEMCAD X, [online]. Available: http://www.speag.com/products/semcad/applications/
[5] X. Chen, T. M. Grzegorczyk, B. –I. Wu, J. Pacheco, Jr., and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev E70., 016608, 2004.
[6] J. Kim and Y. R. Samii , “Implanted antennas inside a human body: Simulations, designs, and characterizations,” IEEE Trans. Microw. Theory Tech., vol.52, pp. 1934–1943, Aug. 2004.
[7] C. M. Lee, T. C. Yo, C. H. Luo, C. H. Tu, and T. Z. Juang, “Compact broadband stacked implantable antenna for biotelemetry with medical devices,” Electron Lett., vol. 43, pp. 660–662, Jun. 2007.
[8] T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual band implantable antenna and development of skin mimicking gels for continuous glucose monitoring,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 4, pp. 1001–1008, Apr. 2008.
[9] C. M. Lee, T. C. Yo, F. J. Huang and C. H. Luo, “Dual­resonant π­shape with double L­strips PIFA for implantable biotelemetry,” Electron.Lett., vol.44, pp. 387–388, July 2008.
[10] F. Merli, L. Bolomey, J. F. Zürcher, G. Corradini, E. Meurville and A. K. Skrivervik, “Design, realization and measurements of a miniature antenna for implantable wireless communication systems,” IEEE Trans. Antennas Propag., vol. 59, pp. 3544–3555, Oct. 2011.
[11] T. F. Chien, C. M. Cheng, H. C. Yang, J. W. Jiang, and C. H. Luo, “Development of nonsuperstrate implantable low­profile CPW­fed ceramic antennas,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 599–602, Jun. 2010.
[12] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ ,” Sov. Phys. Usp., vol. 10, no. 4, pp. 509–514, Jan. –Feb. 1968.
[13] J. B. Pendry, “Low-frequency plasmons in thin wire structures,” J. Phys.: Condens. Matter, vol. 10, pp. 4785–4809, Mar. 1998.
[14] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., vol. 84, no. 18, pp. 4184–4187, May 2000.
[15] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors andenhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2075–2083, Nov. 1999.
[16] Italian Nat. Res. Council, Florence, Calculation of the dielectric properties of body tissues, [Online]. Available: http://niremf.ifac.cnr.it/tissprop/
[17] C. M. Lee, “The implementation of antenna for implantable biotelemetry system and the design of broadband antenna,” Ph. D. Thesis, Department of Electrical Engineering National Cheng Kung University, Taiwan, Jan. 2009.
[18] C. Gabriel, S. Gabriel and E. Corthout “The dielectric properties of biological tissues: I. Literature survey,” Physics Medicine Biology, vol. 41, pp. 2231–2249, 1996.
[19] S. Gabriel, R. W. Lau and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Physics Medicine Biology, vol. 41, pp. 2251–2269, 1996.
[20] S. Gabriel, R. W. Lau and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Physics Medicine Biology, vol. 41, pp. 2271–2293, 1996.
[21] D. K. Cheng, Field and Wave Electromagnetics. 2nd ed., Addison Wesley Press, New Jersey, USA, 1989.
[22] R. F. Harrington, Time-Harmonic Electromagnetic Fields, John Wiley & Sons, New York, USA, 2001.
[23] R. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antennas Propag., vol. 51, pp. 1516–1529, Jul. 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.113.30
論文開放下載的時間是 校外不公開

Your IP address is 3.144.113.30
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code