Responsive image
博碩士論文 etd-0716112-164621 詳細資訊
Title page for etd-0716112-164621
論文名稱
Title
探討Thimerosal 對 PC3 攝護腺癌細胞造成鈣離子移動及凋亡的效應
Effect of thimerosal on Ca2+ movement and apoptosis in PC3 prostate cancer cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-20
繳交日期
Date of Submission
2012-07-16
關鍵字
Keywords
硫柳汞、人類攝護腺癌細胞株、鈣離子
PC3 cells, Ca2+, thimerosal
統計
Statistics
本論文已被瀏覽 5713 次,被下載 295
The thesis/dissertation has been browsed 5713 times, has been downloaded 295 times.
中文摘要
Thimerosal (硫柳汞)是一種含汞藥劑常見於疫苗製劑中作為防腐劑。它會藉由不同的受體及離子通道於不同的細胞內造成鈣離子經細胞膜移動。
細胞內游離鈣離子濃度的上升於許多病生理過程中扮演重要訊息如凋亡及壞死。 Thimerosal會造成不同種類細胞內游離鈣離子濃度的上升且藉由不同的基轉。
本實驗在於探討thimerosal對人類攝護腺癌細胞株(PC3)的細胞內游離鈣離子濃度的效應。WST-1螢光法測定不同藥劑濃度條件下的細胞存活率及以 propidium iodide染色法測定其凋亡的情況。本研究之結果有助於了解thimerosal對身體重要器官細胞的藥理毒理作用。
研究表明thimerosalu以濃度依賴方式來增加細胞內游離鈣離子濃度。若將細胞外鈣離子移除會部分降低鈣離子訊息。Thimerosal造成鈣離子內流會被下列藥劑抑制含econazole、SKF963656及protein kinase C modulators (含PMA及GF109203X)。於無鈣離子培養液中,若以BHQ(一種endoplasmic reticulum Ca2+ pump inhibitor)前處理則thimerosal誘發細胞內游離鈣離子濃度的上升會部分受抑制。Thimerosal以濃度依賴方式造成細胞死亡且不受鈣離子螯合劑BAPTA影響。Propidium iodide染色顯示凋亡是細胞死亡的原因。
總結,.thimerosal造成PC3細胞細胞內游離鈣離子濃度上升是由於鈣離子自內質網釋出及鈣離子內流以protein kinase C及phospholipase A2來調控store-operated Ca2+ channels。Thimerosal 造成細胞死亡是以與鈣離子無關的凋亡方式。
Abstract
Thimerosal is a mercury-containing component found in many vaccine preparations and used as a preservative. It causes Ca2+ movement across cell membrane in different cells that may be mediated via effects on different receptors and ion channels.
A rise in intracellular free Ca2+ concentrations ([Ca2+]i) is a key signal for many pathophysiological processes in cells, including apoptosis and necrosis. Thimerosal increases [Ca2+]i in different cell types. The mechanisms underlying thimerosal-induced Ca2+ signal vary with cell types.
The present study evaluated the effects of thimerosal on [Ca2+]i in human prostate cancer cells (PC3). WST-1 reduction assays and propidium iodide-staining assays were used to determine cell viability and apoptosis in the presence of thimerosal. The experimental results may be helpful to understand the pahrmocological and toxicological effects of thimerosal on cells from important organs.
Results showed that thimerosal (10–200μM) increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Thimerosal-induced Ca2+ influx was inhibited by econazole, SKF963656, the phospholipase A2 inhibitor aristolochic acid, and protein kinase C modulators [phorbol 12-myristate 13-acetate (PMA) and GF109203X]. In Ca2+-free medium, a 200-mM thimerosal-induced [Ca2+]i rise was partly inhibited after pretreatment with 2,5-di-tert-butylhydroquinone (BHQ) (an endoplasmic reticulum Ca2+ pump inhibitor). Thimerosal at 1–7μM induced cell death in a concentration-dependent manner that was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid (BAPTA). Propidium iodide staining suggests that apoptosis played a role in the death.
Collectively, in PC3 cells, thimerosal induced [Ca2+]i rise by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx via store-operated Ca2+ channels in a manner regulated by protein kinase C and phospholipase A2. Thimerosal also induced cell death in a Ca2+-independent apoptotic manner.
目次 Table of Contents
摘要 3
ABSTRACT 5
LIST OF ABBREVIATIONS 7
CHAPTER 1 INTRODUCTION 11
1.INTRODUCTION 11
1.1. The characteristics of thimerosal 11
1.2. The calcium signaling with dynamics, homeostasis and cell death 14
1.3. Forms of cell death: apoptosis, necrosis and autophage 16
1.4. The role of Ca2+ signaling in apoptosis 19
1.5. Thimerosal increases [Ca2+]i in different channels, and cell types and induces cytotoxicity 21
1.6. Ca2+ homeostasis of advanced prostate cancer cells 22
1.7. Various ligands increase [Ca2+]i in PC3 cell line 23
1.8. Pharmacological analysis of intracellular Ca2+ signaling 23
1.9. Cell viability assays 24
CHAPTER 2 AIM AND STUDY STRATEGY 36
CHAPTER 3 MATERIALS AND METHODS 38
3.1. Materials 38
3.2. Cell culture 38
3.3. Solutions 38
3.4. [Ca2+]i measurements 38
3.5. Cell viability assays 39
3.6. Flow cytometry 40
3.7. Statistics 40
CHAPTER 4 EFFECT OF THIMEROSAL ON Ca2+ MOVEMENT AND APOPPTOSIS IN PC3 PROSTATE CANCER CELLS. 42
4.1. INTRODUCTION 42
4.2. RESULTS 43
4.2.1. Effect of thimerosal on [Ca2+]i in fura-2-loaded PC3 cells 43
4.2.2. Effect of thimerosal on Ca2+ influx by measuring Mn2+ quench of fura-2 fluorescence 44
4.2.3. Effect of Ca2+ channel blockers and protein kinase C modulators on thimerosal-induced [Ca2+]i rise 44
4.2.4. Intracellular Ca2+ stores of thimerosal-induced Ca2+ release 45
4.2.5. Cytotoxic effect of thimerosal on PC3 cells 45
4.2.6. Effect of thimerosal on apoptosis of PC3 cells 45
4.3. DISCUSSION 54
CHAPTER 5 GENERAL CONCLUSION 58
LIST OF FIGURES
Figure 1.1. The structural formulas of thimerosal and of thiosalicylic acid. 26
Figure 1.2. The effect of thimerosal and thiosalicylic acid on the level of intracellular calcium in the neutrophil. 27
Figure 1.3. Calcium-signaling dynamics and homeostasis. 28
Figure 1.4. Calcium-mobilizing messengers and modulators. 30
Figure 1.5. Signalling pathway that lead to apoptosis in mammalian cells. 32
Figure 1.6. Crosstalk between calpains and caspases during apoptosis. 33
Figure 1.7. Scheme summarizing the changes in Ca2+ homeostasis in epithelial cells of late prostate cancer stages. 34
Figure 1.8. The structure formula of fura-2. 35
Figure 1.9. Cleavage of the tetrazolium salt WST-1 to formazan. 35
Figure 4.1. Effect of thimerosal on [Ca2+]i in fura-2-laoded PC3 cells. 47
Figure 4.2. Effect of thimerosal on Ca2+ influx by measuring Mn2+ quench of fura-2 fluorescence. 49
Figure 4.3. Effect of Ca2+ channel blockers and protein kinase C modulators on thimerosal-induce [Ca2+]i rise. 50
Figure 4.4. Intracellular Ca2+ stores of thimerosal-induced Ca2+ release. 51
Figure 4.5. Cytotoxic effect of thimerosal on PC3 cells. 52
Figure 4.6. Effect of thimerosal on apoptosis of PC3 cells. 53
REFERENCES 59
APPENDIX 1
Effect of thimerosal on Ca2+ movement and apoptosis in PC3 prostate cancer cells 76
APPENDIX 2
Effect of diallyl disulfide on Ca2+ movement and viability in PC3 human prostate cancer cells 83
APPENDIX 3
Effect of calmidazolium on [Ca2+]i and viability in human hepatoma cells. 91
APPENDIX 4
Maptotiline-induced Ca2+ fluxes and apoptosis in human osteosarcoma cells. 99
PUBLICATIONS 106
參考文獻 References
Abramson JJ, Zable AC, Favero TG, Salama, G. 1995. Thimerosal interacts with the Ca2+ release channel ryanodine receptor from skeletal muscle sarcoplasmic reticulum. J Biol Chem 270:29644–29647.

Berridge MJ, Lipp P, Bootman MD. 2000. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

Berridge MJ, Bootman MD, Roderick HL. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 7:517-29.

Berridge MV, Tan AS, McCoy KD, Wang L. 1996. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 4:15-19.

Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinto P. 2008. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43:184-195.

Boittin FX, Gribi F, Serir K, Be′ny JL. 2008. Ca2+-independent PLA2 controls endothelial store-operated Ca2+ entry and vascular tone in intact aorta. Am J Physiol Heart Circ Physiol 295:H2466–H2474.

Boittin FX, Petermann O, Hirn C, Mittaud P, Dorchies OM, Roulet E, Ruegg UT. 2006. Ca2+-independent phospholipase A2 enhances store-operated Ca2+ entry in dystrophic skeletal muscle fibers. J Cell Sci 119:3733–3742.

Boldin MP, Goncharov TM, Goltsev YV, Wallach D. 1996. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803–815.

Bootman MD, Berridge MJ, Roderick HL. 2002. Calcium signalling: more messengers, more channels, more complexity. Cur Biol 12:R563–R565.

Bootman MD, Taylor CW, Berridge MJ. 1992. The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem 267:25113–25119.

Bursch W. 2001. The autophagosomal–lysosomal compartment in programmed cell death. Cell Death Differ. 8:569–581.

Carafoli E, Santella L, Brance D, Brisi M. 2001. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36:107–260.

Chang HC, Cheng HH, Huang CJ, Chen WC, Chen IS, Liu SI, Hsu SS, Chang HT, Wang JK, Lu YC, Chou CT, Jan CR. 2006. Safrole-induced Ca2+ mobilization and cytotoxicity in human PC3 prostate cancer cells. J Recept Signal Transduct Res 26:199–212.

Chang HC, Huang CC, Huang CJ, Cheng JS, Liu SI, Tsai JY, Chang HT, Huang JK, Chou CT, Jan CR. 2008. Desipramineinduced apoptosis in human PC3 prostate cancer cells: activation of JNK kinase and caspase-3 pathways and a protective role of [Ca2+]i elevation. Toxicology 250:9–14.

Chang HT, Liu CS, Chou CT, Hsieh CH, Chang CH, Chen WC, Liu SI, Hsu SS, Chen JS, Jiann BP, Jan CR. 2005. Thimerosal induced cytosolic Ca2+ elevation and subsequent cell death in human osteosarcoma cells. Pharmacol Res 52:328–333.

Chen L, Harada N, Yamashita T. 1998. Thimerosal-induced Ca2+ mobilization in isolated guinea pig cochlear outer hair cells. Acta Otolaryngol Sup 539:28–33.

Chua BT, Guo K, Li P. 2000. Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem 275:5131–5135.

Clapham DE. 1995. Intracellular calcium. Replenishing the stores. Nature 375:634–635.

Cory AH, Owen TC, Barltrop JA, Cory JG. 1991. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3:207-212.

Du C, Fang M, Li Y, Li L, Wang X. 2000. Smac, a mitochondrial protein that promotes cytochrome c dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42.

Dulhunty A, Haarmann C, Green D, Hart J. 2000. How many cysteine residues regulate ryanodine receptor channel activity? Antioxidants Redox Signal 2:27–34.

Eguchi Y, Shimizu S, Tsujimoto Y. 1997. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840.

Elferink JG, de Koster BM. 1998. The effect of thimerosal on neutrophil migration: a comparison with the effect on calcium mo-and CD11b expression. Biochem Pharmacol 55:305–312.

Elferink JG. 1999. Thimerosal: a versatile sulfhydryl reagent, calcium mobilizer, and cell function-modulating agent. Gen Pharmacol 33:1–6.

Evans JR, Bielefeldt K. 2000. Regulation of sodium currents through oxidation and reduction of thiol residues. Neurosci 101:229–236.

Fearon IM, Palmer AC, Balmforth AJ, Ball SG, Varadi G, Peers C. 1999. Modulation of recombinant human cardiac L-type Ca2+ channel alpha1C subunits by redox agents and hypoxia. J Physiol 514:629–637.

Ferrari D, Pinton P, Szabadkai G, Chami M, Campanella M, Pozzan T, Rizzuto R. 2002. Endoplasmic reticulum, Bcl-2 and Ca2+ handling in apoptosis. Cell Calcium 32:413-420.

Fixemer T, Wissenbach U, Flockerzi V, Bonkhoff H. 2003. Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression. Oncogene 22:7858–7861.

Flourakis M., Prevarskaya N. 2009. Insights into Ca2+ homeostasis of advanced prostate cancer cells, Biochimica et Biophysica Acta 1793: 1105-1109

Geier DA, Sykes LK, Geier MR. 2007. A review of Thimerosal (Merthiolate) and its ethylmercury breakdown product: specific historical considerations regarding safety and effectiveness. J Toxicol Environ Health B Cri Rev 10:575–596.

Gericke M, Droogmans G, Nilius B. 1993. Thimerosal induced of intracellular calcium in human endothelial cells. Cell Calcium 14: 201–207.

Grynkiewicz G, Poenie M, Tsien RY. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450.

Hatzelmann A, Haurand M, Ullrich V. 1990. Involvement of calcium the thimerosal-stimulated formation of leukotriene by fMLP in human polymorphonuclear leukocytes. Biochem Pharmacol 39:559–567.

Hecker M, Brüne B, Decker K, Ullrich V. 1989. The sulfhydryl reagent thimerosal elicits human platelet aggregation by mobilization of intracellular calcium and secondary prostaglandin endoperoxide formation. Biochem Biophys Res Commun 159:961–968.

Hegde R, Srinivasula SM, Wassell R, Mukattash R, Cilenti L, Zhang Z, DuBois G, Lazebnik Y, Zervos AS, Fernandes Alnemri T, et al. 2002. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277:432–438.

Herdman ML, Marcelo A, Huang Y, Niles RM, Dhar S, Kiningham KK. 2006. Thimerosal induces apoptosis in a neuroblastoma model via the cJun N-terminal kinase pathway. Toxicol Sci 92:246–253.

Huang JK, Cheng HH, Huang CJ, Kuo CC, Chen WC, Liu SI, Hsu SS, Chang HT, Lu YC, Tseng LL, Chiang AJ, Chou CT, Jan CR. 2006. Effect of capsazepine on cytosolic Ca2+ levels and proliferation of human prostate cancer cells. Toxicol In Vitro 20:567–574.

Huang JK, Liu CS, Chou CT, Liu SI, Hsu SS, Chang HT, Hsieh CH, Chang CH, Chen WC, Jan CR. 2005. Effects of econazole on Ca2+ levels in and the growth of human prostate cancer PC3 cells. Clin Exp Pharmacol Physiol 32:735–741.

Hurley TW, Ryan MP, Brinck RW. 1992. Changes of cytosolic Ca2+ interfere with measurements of cytosolic Mg2+ using mag-fura-2. Am J Physiol 263:C300–C307.

Ichas F, Jouaville LS, Mazat JP. 1997. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89:1145–1153.

Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A. 2002. DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157:455–468.

Ishiyama M, Tominaga H, Shiga M, Sadamoto K, Ohkura Y, Ueno K, Watanabe M. 1995. Novel cell proliferation and cytotoxicity assays using a tetrazolium salt that produce formazan dye. In Vitro Toxicology 8:187-189.

Islam MS, Berggren PO, Larsson O. 1993. Sulfhydryl oxidation induces rapid and reversible closure of the ATP-regulated K+ channel in the pancreatic beta-cell. FEBS Letters 319:128–132.

Jewell SA, Bellomo G, Thorn P, Orrenius S, Smith MT. 1982. Bleb formation in hepatocytes during drug metabolism is caused by disturbances in thiol and calcium ion homeostasis. Science 217:1257-1259.

Jiang N, Zhang ZM, Liu L, Zhang C, Zhang YL, Zhang ZC. 2006. Effects of Ca2+ channel blockers on store-operated Ca2+ channel currents of Kupffer cells after hepatic ischemia/reperfusion injury in rats. World J Gastroenterol 12:4694–4698.

Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, Donnelly J, Burns D, Ng SC, Rosenberg S, Wang X. 2003. Distinctive roles of PHAP proteins and prothymosin-α in a death regulatory pathway. Science 299: 223–226.

Karhapää L, Titievsky A, Kaila K, Törnquist K. 1996. Redox modulation of calcium entry and release of intracellular calcium by thimerosal in GH4C1 pituitary cells. Cell Calcium 20:447–457.

Kass GEN, Wright JM, Nicotera P, Orrenius S. 1988. The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity: role of intracellular calcium. Arch Biochem Biophys 260:789-797.

Kerr JFR, Wyllie AH, Currie AR. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257.

Kuo LN, Huang CJ, Fang YC, Huang CC, Wang JL, Lin KL, Chu ST, Chang HT, Chien JM, Su HH, Chi CC, Chen WC, Tsai JY, Liao WC, Tseng LL, Jan CR. 2009. Effect of thimerosal on Ca2+ movement and viability in human oral cancer cells. Hum Exp Toxicol 28:301–308.

Lang RJ, Harvey JR, McPhee GJ, Klemm MF. 2000. Nitric oxide and thiol reagent modulation of Ca2+-activated K+ (BKCa) channels in myocytes of the guinea-pig taenia caeci. J Physiol 525:363–376.

Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. 1997. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med185:1481–1486.

Leone G, Schintu S, Porfiri R, Landolfi R, Bizzi B. 1979. Human platelet aggregation by thimerosal. Functional and ultrastructural studies. Haemostasis 8:390–399.

Li LY, Luo X, Wang X. 2001. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99.

Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489.

Lipp P, Niggli E. 1994. Sodium current-induced calcium signals in isolated guinea-pig ventricular myocytes. J Physiol 474:439–446.

Liu SI, Huang CC, Huang CJ, Wang BW, Chang PM, Fang YC, Chen WC, Wang JL, Lu YC, Chu ST, Chou CT, Jan CR. 2007. Thimerosal- induced apoptosis in human SCM1 gastric cancer cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation. Toxicol Sci 100:109–117.

Lupescu A, Bock CT, Lang PA, Aberle S, Kaiser H, Kandolf R, Lang F. 2006. Phospholipase A2 activity-dependent stimulation of Ca2+ entry by human parvovirus B19 capsid protein VP1. J Virol 80:11370–11380.

Martin, F., Gualberto, A., Sobrino, F., Pintado, E., 1991. Thimerosal induces calcium mobilization, fructose 2,6-bisphosphate synthesis and cytoplasmic alkalinization in rat thymus lymphocytes. Biochim Biophys Acta 1091:110–114.

Merritt JE, Jacob R, Hallam TJ. 1989. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J Biol Chem 264:1522–1527.

Mihai R, Lai T, Schofield G, Farndon JR. 1999. Thimerosal increases the responsiveness of the calcium receptor in human parathyroid and rMTC6-23 cells. Cell Calcium 126:95–101.

Montero M, Alonso MT, Carnicero E, Chuchillo-Ibanez I, Albillos A, Garcia AG, Garcia-Sancho J, Alvarez J. 2000. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2:57–61

Montero M, Barrero MJ, Torrecilla F, Lobato′n CD, Moreno A, Alvarez J. 2001. Stimulation by thimerosal of histamine-induced Ca2+ release in intact HeLa cells seen with aequorin targeted to the endoplasmic reticulum. Cell Calcium 30:181–190.

Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63.

Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM. 1996. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827.

Nakagawa T, Yuan J. 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150: 887–894.

Neumar RW, Xu YA, Gada H, Guttmann RP, Siman R. 2003. Cross-talk between calapain and caspase proteolytic systems during neuronal apoptosis. J Biol Chem 278:14162–14167.

Nicotera P, Hartzell P, Davis G, Orrenius S. 1986. The formation of plasma membrane blebs in hepatocytes exposed to agents that increase cytosolic Ca2+ is mediated by the activation of a non-lysosomal proteolytic system. FEBS Lett 209:139-144.

Orrenius S, Burkitt M, Kass GEN, Dypbukt JM, Nicotera P. 1992. Calcium ions and oxidative cell injury. Ann Neurol 32:S33-S42.

Orrenius S, Zhivotovsky B, Nicotera P. 2003. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 7:552-65.

Parys JB, Missiaen L, De Smedt H, Droogmans G, Casteels R. 1993. Bell-shaped activation of inositol-1,4,5-trisphosphate-induced Ca2+ release by thimerosal in permeabilized A7r5 smooth muscle cells. Pflügers Archiv European Journal of Physiology 424:516–522.

Pintado E, Baquero-Leonis D, Conde M, Sobrino F. 1995. Effect of thimerosal and other sulfhydryl reagents on calcium permeability in thymus lymphocytes. Biochem Pharmacol 49:227–232.

Poirier SN, Poitras M, Laflamme K, Guillemette G. 2001. Thiol reactive agents biphasically regulate inositol 1,4,5-trisphosphate binding and Ca2+ release activities in bovine adrenal cortex microsomes. Endocrinology 142:2614–2621.

Porn-Ares MI, Samali A, Orrenius S. 1998. Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ. 5:1028–1033.

Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhaes PJ, di Virgilio F, Pozzan T. 2003. Calcium and apoptosis: facts and hypothesises. Oncogene 22:8619-8627.

Rouzaire-Dubois B, Dubois JM. 2004. Calcium-dependent proliferation of NG108-15 neuroblastoma cells. Gen Physiol Biophys 23:231-239.

Schmitz I, Walczak H, Krammer PH, Peter ME. 1999. Differences between CD95 type I and II cells detected with the CD95 ligand. Cell Death Differ 6:821–822.

Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR. 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res48:4827-4833.

Shideman CR, Reinardy JL, Thayer SA. 2009. Gamma-Secretase activity modulates store-operated Ca2+ entry into rat sensory neurons. Neurosci Lett 451:124–128.

Singaravelu K, Lohr C, Deitmer JW. 2008. Calcium-independent phospholipase A2 mediates store-operated calcium entry in rat cerebellar granule cells. Cerebellum 7:467–481.

Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes-Alnemri T, Shi Y, Alnemri ES. 2001. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116.

Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G. 1996. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184: 1331–1341.

Szalai G, Krishnamurthy R, Hajnoczky G. 1999. Apoptosis driven by IP3-linked mitochondrial calcium signal. EMBO J 18:6349-6361.

Tanaka Y, Tashjian Jr AH. 1994. Thimerosal potentiates Ca2+ release mediated by both the inositol 1,4,5-trisphosphate and the ryanodine receptors in sea urchin eggs. Implications for mechanistic studies on Ca2+ signaling. J Biol Chem 269:11247–11253.

Tedesco E, Rigoni M, Caccin P, Grishin E, Rossetto O, Montecucco C. 2009. Calcium overload in nerve terminals of cultured neurons intoxicated by alpha-latrotoxin and snake PLA2 neurotoxins. Toxicon 54:138–144.

Thebault S, Zholos A, Enfissi A, Slomianny C, Dewailly E, Roudbaraki M, Parys J, Prevarskaya N. 2005. Receptor-operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. J Cell Physiol 204:320–328

Thorn PB, Llopis J, Gallacher DV, Petersen OH. 1992. Cytosolic Ca2+ spikes evoked by the thiol reagent thimerosal in both in tact and internally perfused single pancreatic acinar cells. Pflügers Archiv European Journal of Physiology 422:173–178.

Tojyo Y, Tanimura A, Nezu A, Morita T. 2001. Possible mechanisms regulating ATP- and thimerosal-induced Ca2+ oscillations in the HSY salivary duct cell line. Biochem Biophys Act 1539:114–121.

Trump BF, Berezesky IK. 1996. The role of altered [Ca2+]i regulation in apoptosis, oncosis, and necrosis. Biochem Biophys Acta 1313:173-178.

Tseng JK, Ju JC. 2009. Calcium release of heat-shocked porcine oocytes induced by thimerosal or inositol 1,4,5-trisphosphate IP3. Animal Repro Sci 111:41–53.

Ueha-Ishibashi T, Oyama Y, Nakao H, Umebayashi C, Nishizaki Y, Tatsuishi T, Iwase K, Murao K, Seo H. 2004. Effect of thimerosal, a preservative in vaccines, on intracellular Ca2+ concentration of rat cerebellar neurons. Toxicology 195:77–84.

Vanden Abeele F, Lemonnier L, Thebault S, Lepage G, Parys JB, Shuba Y, Skryma R, Prevarskaya N. 2004. Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J Biol Chem 279:30326–30337.

Vrzheshch PV, Tatarinstev AV, Orlova EV, Yershov DE, Varfolomeyev SD. 1992. Kinetics of merthiolate-induced aggregation of human platelets. Thrombosis Res 67:505–516.

Wahl M, Lucherini MJ, Gruenstein E. 1990. Intracellular Ca2+ measurement with Indo-1 in substrate-attached cells: advantages and special considerations. Cell Calcium 11:487–500.

Wang KK, Posmantur R, Nadimpalli R, Nath R, Mohan P, Nixon RA, Talanian RV, Keegan M, Herzog L, Allen H. 1998. Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Arch Biochem Biophys 356: 187–196.

Wassenberg JJ, Clark KD, Nelson DL. 1997. Effect of SERCA pump inhibitors on chemoresponses in Paramecium. J Eukaryot Microbiol 44:574–581.

Waterhouse NJ, Finucane DM, Green DR, Elce JS, Kumar S, Alnemri ES, Litwack G, Khanna K, Lavin MF, Watters DJ.et al. 1998. Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ 5:1051–1061.

Yel L, Brown LE, Su K, Gollapudi S, Gupta S. 2005. Thimerosal induces neuronal cell apoptosis by causing cytochrome c and apoptosis-inducing factor release from mitochondria. Int J Mol Med 16:971–977.

Yoneda T, Imaizumi K, Oono K, Yi D, Gomi F, Katayama T, Tohyama M 2001. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276: 13935-13940.

Zhang L, Barritt GJ. 2006. TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function? Endocr Relat Cancer 13:27–38.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code