Responsive image
博碩士論文 etd-0716112-174646 詳細資訊
Title page for etd-0716112-174646
論文名稱
Title
常壓微波電漿轉化生質廢棄物產氫之研究
Production of Hydrogen from the Conversion of Biowaste using an Atomospheric-Pressure Microwave plasma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-13
繳交日期
Date of Submission
2012-07-16
關鍵字
Keywords
重組反應、轉化率、氫氣、生質廢棄物、電漿
Conversion rate, Reforming reaction, Hydrogen, Biomass wastes, Plasma
統計
Statistics
本論文已被瀏覽 5665 次,被下載 1313
The thesis/dissertation has been browsed 5665 times, has been downloaded 1313 times.
中文摘要
本研究以微波電漿系統與添加不同生質廢棄物(稻稈、榕樹葉、藻乾)進行產氫之研究,在常壓微波電漿運轉(包含中心及旋進氣流共計12SLM與功率800、900、1000W)下,以不同進料方式來探討氫氣及其他氣相產物之濃度,並計算轉化率及進行技術可行性評估。稻稈以上游式進料於微波電漿系統(800、900、1000W)所產生之氫氣濃度為47.92%、52.66%、56.08%;於下游式進料時所產生之氫氣濃度為33.65%、40.15%、45.39%,榕樹葉以上游式進料所產生之氫氣濃度為40.61%、48.63%、52.82%;於下游式進料時所產生之氫氣濃度為34.08%、37.97%、40.52%,藻乾以上游式進料所產生之氫氣濃度為36.75%、41.34%、45.13%,於下游式進料時所產生之氫氣濃度為30.80%、33.20%、37.58%,顯示在產氫量方面上游式進料優於下游式進料且功率的增加可有效提升氫氣產量。稻稈於上游式進料且功率為1000W時,會有最佳產氫量,每克之稻稈約可產生40.47mg氫氣,轉化率達67.45%,榕樹葉及藻乾也約可產生40.40mg及31.46mg氫氣轉化率達67.33%及52.43%。在其它氣相產物方面,本研究中並未產生CH4之生成,判斷經微波電漿轉化產生之大部分CH4,在產氫過程中已進行重組反應且和CO2反應生成CO及H2。CO2之濃度隨功率增加而下降,在上游式進料中CO2之濃度下降較下游式明顯,經由t-test檢定結果顯示CO濃度在不同功率下無顯著差異。藉由SWOT之分析方法可知常壓微波電漿轉化生質廢棄物產氫之可行性著重於其內部本身產物的質與量及技術、效能等因素,以及外部環境的經濟、政策、能源等因子。
Abstract
This study investigated hydrogen produced from feeding three types of biomass wastes (rice straw, banyan leaves, and dry algae) into the microwave plasma system. When operating the microwave plasma system atmospherically (including 12SLM of central and vortex air flow at a power of 800W, 900W, or 1000W), different feeding methods were adopted, and the researchers measured the concentration of hydrogen and other gas products, calculated the conversion rate, and evaluated the feasibility of the technique. For feeding rice straws into the microwave plasma system at 800W, 900W, and 1000W using the upstream method, the concentrations of the produced hydrogen were 47.92%, 52.66%, and 56.08%, respectively. For feeding rice straws using the downstream method, the concentrations of the produced hydrogen were 33.65%, 40.15%, and 45.39%, respectively. For feeding banyan leaves using the upstream method, the concentrations of the produced hydrogen were 40.61%, 48.63%, and 52.82%, respectively. For feeding banyan leaves using the downstream method, the concentrations of the produced hydrogen were 34.08%, 37.97%, and 40.52%, respectively. For feeding dry algae using the upstream method, the concentrations of the produced hydrogen were 36.75%, 41.34%, and 45.13%, respectively. For feeding dry algae using the downstream method, the concentrations of the produced hydrogen were 30.80%, 33.20%, and 37.58%, respectively. This data indicates that the upstream feeding method is better than the downstream one for hydrogen production, and an increase of power can enhance the production of hydrogen. The most optimum hydrogen production was achieved when rice straws were fed into the system using the upstream method at a power of 1000W; each gram of rice straws produced about 40.47mg of hydrogen (conversion rate = 67.45%). For banyan leaves and dry algae, 40.40mg (conversion rate = 67.33%) and 31.46mg (conversion rate = 52.43%) of hydrogen were produced respectively. For other gas products, no CH4 was produced in this study because most of the produced CH4 from microwave plasma conversion had reacted with CO2 and produced CO and H2. The study also revealed that the concentration of CO2 decreased as the power decreased, and this drop of concentration was more apparent in the upstream feeding method than in the downstream method. Nevertheless, the result from t-test suggested that the different CO2 concentration at different power was not statistically significant. SWOT analysis was performed to examine the feasibility of using microwave plasma atmospherically for converting biomass wastes to hydrogen, and the result revealed that internally, the emphasis should be placed on the quality and quantity of products, as well as the techniques and performance, while externally, economy, policies, and energy sources should be the focuses.
目次 Table of Contents
謝誌 I
摘要 II
Abstract III
目錄 V
圖次 VII
表次 IX
第一章 前言 1
1-1 研究緣起 1
1-2 研究目標 2
第二章 文獻回顧 3
2-1 能源概況 3
2-1-1 能源現況 3
2-1-2氫氣之特性與氫能源 7
2-2 生質廢棄物特性 11
2-2-1 生質廢棄物之特性 11
2-2-2 熱處理技術 12
2-2-3 農業廢棄物之處置 18
2-2-4 現今生質能發展與應用 18
2-3 電漿轉化生質廢棄物 19
2-3-1 電漿基本原理 19
2-3-2 電漿處理廢棄物理論 20
2-3-3 微波電漿 25
第三章 實驗設備與方法 29
3-1整體研究架構 29
3-2 研究設備 29
3-2-1 常壓微波電漿系統 29
3-2-2 產物分析系統 32
3-3 實驗步驟 35
3-4 檢量線之配置 39
第四章 結果與討論 43
4-1 微波功率對於溫度之影響 43
4-1-1 不同微波功率下之升溫情形 43
4-1-2 微波功率與反應溫度之關係 45
4-2 稻稈於微波電漿系統內之產氫情形 47
4-2-1 稻稈之基本性質 47
4-2-2 稻稈在上游式進料之產氫情形 49
4-2-3 稻稈在不同功率下產氫情形 51
4-2-4 稻稈在下游式進料之產氫情形 54
4-2-5 稻稈在不同功率下產氫情形 56
4-3 榕樹葉於微波電漿系統內之產氫情形 59
4-3-1 榕樹葉之基本性質 59
4-3-2 榕樹葉在上游式進料之產氫情形 61
4-3-4 榕樹葉在不同功率下產氫情形 63
4-3-4 榕樹葉在下游式進料之產氫情形 66
4-3-5 榕樹葉在不同功率下產氫情形 68
4-4 藻乾於微波電漿系統內之產氫情形 71
4-4-1 藻乾之基本性質 71
4-4-2 藻乾在上游式進料之產氫情形 73
4-4-3 藻乾在不同功率下產氫情形 75
4-4-4 藻乾在下游式進料之產氫情形 78
4-4-5 藻乾在不同功率下產氫情形 80
4-5 生質廢棄物經微波電漿裂解後比較 83
4-5-1 上游式進料下不同種類之生質廢棄物對於產氫量之影響 83
4-5-2 下游式進料下不同種類之生質廢棄物對於產氫量之影響 87
4-5-3 其他氣相產物比較 90
4-5-4 技術可行性評估 96
第五章 結果與討論 99
5-1 結論 99
5-2 建議 100
參考文獻 101
附錄A A

參考文獻 References
Ahmed, S., Aitani, A., Rahman, F., Al-Dawood, A., Al-Muhaish, F., 2009. Decomposition of hydrocarbons to hydrogen and carbon. Applied Catalysis A: General 359, 1–49.
Baumlin, S., Broust, F., Bazer-Bachi, F., Bourdeaux, T., Herbinet, O., Ndiaye, F.T., Ferrer, M., Lédé, J., 2006. Production of hydrogen by lignins fast pyrolysis. International Journal of Hydrogen Energy 31, 2179–2192.
Bridgwater, A.V., 2004. Biomass fast pyrolysis. Thermal Science 8, 21-49.
British Petroleum, 2010. Statistical Review of World Energy.
Bu, Q., Lei, H., Ren, S., Wang, L., Zhang, Q., Tang, J., Ruan, R., 2012. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresource Technology 108, 274–279.
Byun, Y., Cho, M., Chung, J.W., Namkung, W., Lee, H.D., Jang, S.D., Kim, Y.S., Lee, J.H., Lee, C.R., Hwang, S.M., 2011. Hydrogen recovery from the thermal plasma gasification of solid waste. Journal of Hazardous Materials 190, 317–323.
Camillo, F., Niki, B., Maria-Magdalena T., 2011. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry 13, 3273–3281.
Chang, A.C.C., Chang, H.F., Lin, F.J., Lin, K.H., Chen, C.H., 2011. Biomass gasification for hydrogen production. International Journal of Hydrogen Energy 36, 14252–14260.
Chen, G., Andries, J., Spliethoff, H., and Leung, D.Y.C., 2003. Experimental investigation of biomass waste (rice straw, cotton stalk, and pine sawdust) pyrolysis characteristics. Energy Sources 25, 331–337.
Chen, M.Q., Wang, J., Zhang, M.X., Chen, M.g., Zhu, X.F., Min, F.F., Tan, Z.C., 2008. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating. Journal of Analytical and Applied Pyrolysis 82, 145–150.
Chojnacka, K., Chojnacki, A., Go´recka, H., 2004. Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 70, 147-153.
Ciacci, T., Galgano, A., Blasi, C.D., 2010. Numerical simulation of the electromagnetic field and the heat and masstransfer processes during microwave-induced pyrolysis of a wood block. Chemical Engineering Science 65, 4117–4133.
Dai, X.W., Wu, C.Z., Li, H.B., Chen, Y., 2000. The fast pyrolysis of biomass in CFB reactor. Energ. Fuel 14, 552–557.
Demirbas, A., 2002. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy Conversion and Management 43, 897–909.
Diamantopoulou, P. and Voudouris, K., 2008. Optimization of water resources management using SWOT analysis: the case of Zakynthos Island, Ionian Sea, Greece. Environmental Geology 54, 197-211.
Domı´nguez, A., Ferna´ndez, Y., Fidalgo, B., Pis, J.J., Mene´ndez, J.A., 2008. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere 70, 397–403.
Domı´nguez, A., Mene´ndez, J.A., Inguanzo, M., Pı´s, J.J., 2006. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresource Technology 97, 1185–1193.
Dufour, A., Girods, P., Masson, E., Rogaume, Y., Zoulalian, A., 2009. Synthesis gasproduction by biomass pyrolysis: effect of reactor temperature on product distribution. International Journal of Hydrogen Energy 34, 1726–1734.
Efika, C.E., Wu, C., Williams, P.T., 2012. Syngas production from pyrolysis–catalytic steam reforming of waste biomass in a continuous screw kiln reactor. Journal of Analytical and Applied Pyrolysis 95, 87-94.
Elbaba, I.F., Wu, C., Williams, P.T., 2011. Hydrogen production from the pyrolysis-gasification of waste tyres with a nickel/cerium catalyst. International Journal of Hydrogen Energy 36, 6628 – 6637.
Fernández, Y., Menéndez, J.A., 2011. Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes. Journal of Analytical and Applied Pyrolysis 91, 316–322.
Freni, S., Calogero, G., Cavallaro, S., 2000. Hydrogen production from methane through catalytic partial. Journal of Power Sources 87, 28–38.
Galeno, G., Minutillo, M., Perna, A., 2011. From waste to electricity through integrated plasmagasification/fuel cell (IPGFC) system. International Journal of Hydrogen Energy 36, 1692 – 1701.
Go´ mez, X., Cuetos, M.J., Prieto, J.I., Mora´n, A., 2009. Bio-hydrogen production from waste fermentation: Mixing and static conditions Renewable Energy 34, 970–975.
Gutsol, K., Nunnally, T., Rabinovich, A., Fridman, A., Starikovskiy, A., Gutsol, A., Kemoun, A., 2012. Plasma assisted dissociation of hydrogen sulfide. International Journal of Hydrogen Energy 37, 1335 – 1347.
Hao, Q., Wang, C., Lu, D., Wang, Y., Li, D., Li, G., 2010. Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature. International Journal of Hydrogen Energy 35, 8884–8890.
He, M., Xiao, B., Liu, S., Guo, X.J., Luo, S.Y., Xu, Z., Feng, Y., Hu, Z., 2009. Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of steam to MSW ratios and weight hourly space velocity on gas production and composition. International Journal of Hydrogen Energy 36, 2174 – 2183.
Henrich, E., Bu¨rkle, S., Meza-Renken, Z.I., Rumpel, S., 1999. Combustion and gasification kinetics of pyrolysis chars from waste and biomass. Journal of Analytical and Applied Pyrolysis 49, 221–241.
Hosoya,T., Kawamoto,H., Saka, S., 2007. Cellulose–hemicellulose and cellulose – lignin interactions in wood pyrolysis at gasification temperature. Journal of Analytical and Applied Pyrolysis 80, 118–125
Hsieh, L.T., Tsai, C.H., Chang, J.E., Tsao, M.C., 2011. Decomposition of Methyl Tert-Butyl Ether by Adding Hydrogen in a Cold Plasma. Reactor Aerosol and Air Quality Research 11, 265-281.
Hu, Z.F., Ma, X.Q., Chen, C.X., 2012. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresource Technology 107, 487–493.
Huang, Y.F., Kuan, W.H., Chiueh, P.T., Lo, S.L., 2011. Pyrolysis of biomass by thermal analysis–mass spectrometry (TA–MS). Bioresource Technology 102, 3527–3534.
Huang, Y.F., Kuan, W.H., Lo, S.L., Lin, C.F., 2008. Total recovery of resources and energy from rice straw using microwave-induced pyrolysis. Bioresource Technology 99, 8252–8258.
Huang, Y.F., Kuan, W.H., Lo, S.L., Lin, C.F., 2010. Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresource Technology 101, 1968–1973.
Iakovou, E., Karagiannidis, A., Vlachos, D., Toka, A., Malamakis, A., 2010. Waste biomass-to-energy supply chain management: A critical synthesis. Waste Management 30, 1860–1870.
Juan-Juan, J., Roma´n-Martı´nez, M.C., Illa´n-Go´mez, M.J., 2006. Effect of potassium content in the activity of K-promotedNi/Al2O3 catalysts for the dry reforming of methane. Applied Catalysis A: General 301, 9–15.
Kalia, V.C., Joshi, A.P., 1995. Conversion of waste biomass (pea-shells) into hydrogen and methane through anaerobic digestion. Bioresource Technology 53, 165–168.
Kalinci, Y., Hepbasli, A., Dincer, I., 2009. Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy 34, 8799–8817.
Kalinci, Y., Hepbasli, A., Dincer, I., 2011. Exergoeconomic analysis of hydrogen production from plasma gasification of sewage sludge using specific exergy cost method. International Journal of Hydrogen Energy 36, 11408 – 11417.
Kargi, F., Catalkaya, E.C., Uzuncar, S., 2011. Hydrogen gas production from waste anaerobic sludge by electrohydrolysis: Effects of applied DC voltage. International Journal of Hydrogen Energy 36, 2049 – 2056.
Kothari, R., Buddhi, D., Sawhney, R.L., 2008. Comparison of environmental and economic aspects of various hydrogen production methods. Renewable and Sustainable Energy Reviews 12, 553–563.
Krı´z, V., Bica´kova´, O., 2009. Hydrogen from the two-stage pyrolysis of bituminous coal/waste plastics mixtures. International Journal of Hydrogen Energy 36, 9014–9022.
Lee, S. Y., Park, J. H., Jane, S. H., Nielsen, L. K., Kim, J. and Jung K. S., 2009. Fermentative Butanol Production by Clostridia. Biotechnology Bioengineering 101, 209-228.
Lei, H., Ren, S., Wang, L., Bu, Q., Julson, J., Holladay, J., Ruan, R., 2011. Microwave pyrolysis of distillers dried grain with solubles (DDGS) for biofuel production. Bioresource Technology 102, 6208–6213.
Li, J., Yin, Y., Zhang, X., Liu, J., Yan, R., 2009. Hydrogen-rich gas production by steam gasification of palm oil wastes over supported tri-metallic catalyst. International Journal of Hydrogen Energy 34, 9108–9115.
Lii, C.Y., Liao, C.D., Stobinski, L., Tomasik, P., 2002. Effect of hydrogen, oxygen, and ammonia low-pressure glow plasma on granular starches. Carbohydrate polymers 49, 449–456.
Liu, X., Ren, N. Q., Song, F., Yang, C. and Wang A., 2008. Recent Advances in Fermentative Biohydrogen Production. Progress in Natural Science, 18, 253-258.
Ma, W., Ogura, M., Kobayashi, T., Takahashi, H., 2004. Preparation of solar grade silicon from optical fibers wastes with thermal plasmas. Solar Energy Materials & Solar Cells 81, 477–483.
Menéndez, J.A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E.G., Bermúdez, J.M., 2010. Microwave heating processes involving carbon materials. Fuel Processing Technology 91, 1–8.
Miller, M.G., 2007. Environmental Metabolomics: A SWOT analysis (strengths, weaknesses, opportunities, and threats). Journal of Proteome Research 6, 540-545.
Miyazawa,T., Kimura, T., Nishikawa, J., Kado, S., Kunimori, K., Tomishige, K., 2006. Catalytic performance of supported Ni catalysts in partial oxidation and steam reforming of tar derived from the pyrolysis of wood biomass. Catalysis Today 115, 254–262.
Mohai, I., Szépvölgyi, J., 2005. Treatment of particulate metallurgical wastes in thermal plasmas. Chemical Engineering and Processing 44, 225–229.
Mohan, D., Pittman, C.U., and Steele, P.H., 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels, 20, 848–889.
Muradov, N.Z., Veziroglu, T.N., 2005. From hydrocarbon to hydrogen–carbon to hydrogen economy. International Journal of Hydrogen Energy 30, 225–237.
Nishikawa, H., Ibe, M., Tanaka, M., Takemoto, T., Ushio, M., 2006. Effect of DC steam plasma on gasifying carbonized waste. Vacuum 80, 1311–1315.
Nishikawa, H., Ibe, M., Tanaka, M., Ushio, M., Takemoto, T., Tanaka, K., Tanahashi, N., Ito, T., 2004. A treatment of carbonaceous wastes using thermal plasma with steam. Vacuum 73, 589–593.
Paradela, F., Pinto, F., Ramos, A.M., Gulyurtlu, I., Cabrita, I., 2009. Study of the slow batch pyrolysis of mixtures of plastics, tyres and forestry biomass wastes. Journal of Analytical and Applied Pyrolysis 85, 392-398.
Patwardhan, P.R., Dalluge, D.L., Shanks, B.H., Brown, R.C., 2011. Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresource Technology 102, 5265–5269.
Rafiq, M.H., Hustad, J.E., 2011. Biosyngas production by autothermal reforming of waste cooking oil with propane using a plasma-assisted gliding arc reactor. International Journal of Hydrogen Energy 36, 8221 – 8233.
Robinson, J., Kingman, S., Irvine, D., Licence, P., Smith, A., Dimitrakis, G., Obermayer, D,. Kappe, C.O., 2010. Understanding microwave heating effects in single mode type cavities—theory and experiment. Physical Chemistry Chemical Physics 12, 4750–4758.
Santaniello, R., Galgano, A., Di Blasi, C., 2012. Coupling transport phenomena and tar cracking in the modeling of microwave-induced pyrolysis of wood. Fuel 96, 355–373.
Senneca, O., 2007. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Processing Technology 88, 87–97.
Sheth, P.N., Babu, B.V., 2010. Production of hydrogen energy through biomass (waste wood) gasification. International Journal of Hydrogen Energy 35, 10803–10810.
Shie, J.L., Lin, J.P., Chang, C.Y., Shih, S.M., Lee, D.J., Wu, C.H., 2004. Pyrolysis of oil sludge with additives of catalytic solid wastes. Journal of Analytical and Applied Pyrolysis 71, 695–707.
Shie, J.L., Tsou, F.J., Lin, K.L., Chang, C.Y., 2010. Bioenergy and products from thermal pyrolysis of rice straw using plasma torch. Bioresource Technology 101, 761–768.
Tang, L., Huang, H., 2005. Plasma Pyrolysis of Biomass for Production of Syngas and Carbon Adsorbent. Energy & Fuels 19, 1174-1178.
Terrados, J., Almonacid, G., and Hontoria, L., 2007. Regional energy planning through SWOT analysis and strategic planning tools. Impact on renewables development. Renewable and Sustainable Energy Reviews 11, 1275-1287.
Tsai, C.H., Chen, K.T., 2009. Production of hydrogen and nano carbon powders from direct plasmalysis of methane. International Journal of Hydrogen Energy 34, 833-838.
Tu, W.K., Shie, J.L., Chang, C.Y., Chang, C.F., Lin, C.F., Yang, S.Y., Kuo, J.T., Shaw, D.G., You, Y.D., Lee, D.J., 2009. Products and bioenergy from the pyrolysis of rice straw via radio frequency plasma and its kinetics. Bioresource Technology 100, 2052–2061.
Vaidyanathan, A., Mulholland, J., Ryu, J., Smith, M. S., Circeo Jr, L.J., 2007. Characterization of fuel gas products from the treatment of solid waste streams with a plasma arc torch. Journal of Environmental Management 82, 77–82.
Van Oost, G., Hrabovsky, M., Kopecky, V., Konrad, M., Hlina, M., Kavka, T., 2009. Pyrolysis/gasification of biomass for synthetic fuel production using a hybrid gas–water stabilized plasma torch. Vacuum 83, 209–212.
W.K., Tu, J.L., Shie, C.Y., Chang, C.F., Chang, C.F., Lin, S.Y., Yang, J.T., Kuo, D.G., Shaw, Y.D., You, D.J., Lee, 2009. Products and bioenergy from the pyrolysis of rice strawvia radio frequency plasma and its kinetics. Bioresource Technology 100,2052–2061.
Wang, Y.F., Tsai, C.H., Chang, W.Y., Kuo, Y.M., 2010. Methane steam reforming for producing hydrogen in an atmospheric-pressure microwave plasma reactor. International Journal of Hydrogen Energy 35, 135–140.
Wang, Y.F., You, Y.S., Tsai, C.H., Wang, L.C., 2010. Production of hydrogen by plasma-reforming of methanol. International Journal of Hydrogen Energy 35, 9637–9640.
Wen, G.D., Xu, Y.P., Xu, Z.S., Tian, Z.J., 2010. Direct conversion of cellulose into hydrogen by aqueous-phase reforming process. Catalysis Communications 11, 522–526.
Williams, P.T., Reed, A.R., 2003. Pre-formed activated carbon matting derived from the pyrolysis of biomass natural fibre textile waste. J. Anal. Appl. Pyrolysis 70, 563-577.
Wu, C., Williams, P.T., Pyrolysis–gasification of post-consumer municipal solid plastic waste for hydrogen production. International Journal of Hydrogen Energy 33, 949–957.
Xiao, R., Chen, X., Wang, F., Yu, G., 2010. Pyrolysis pretreatment of biomass for entrained-flow gasification. Applied Energy 87, 149–155.
Xie, Q., Kong, S., Liu, Y., Zeng, H., 2012. Syngas production by two-stage method of biomass catalytic pyrolysis and gasification. Bioresource Technology 110, 603–609.
Yan, F., Luo, S.Y., Hu, Z.Q, Xiao, B., Cheng, G., 2010. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: Influence of temperature and steam on hydrogen yield and syngas composition. Bioresource Technology 101, 5633–5637.
Zabaniotou, A., Ioannidou, O., Antonakou, E., Lappas, A., 2008. Experimental study of pyrolysis for potential energy,hydrogen and carbon material production from lignocellulosic biomass. International Journal of Hydrogen Energy 33, 2433– 2444.
Zhao, X., Wang, M., Liu H., Li, L., Ma, C., Song, Z., 2012. A microwave reactor for characterization of pyrolyzed biomass. Bioresource Technology 104, 673–678.
曲新生、陳發林、呂錫民,2007,產氫與儲氫技術,台北市:五南圖書出版股份有限公司。
吳俊達,2007,「氫氣生產與儲存技術及其應用」,化工資訊與商情,第47期,26–37。
吳珮瑛、黃雅琪、吳麗敏、劉哲良,2008,「所得分配在不同經濟發展水準國家對CO2排放減量之影響」,法治論叢,第42期,1–40。
宋宛倫,2008,「超音波應用對於電解水產氫氣阻現象影響之研究」,國立雲林科技大學環境與安全衛生工程系所,碩士論文。
杜文凱,2009,「以高週波電漿及觸媒催化程序熱處理稻稈生質廢棄物之研究」,國立臺灣大學環境工程所,博士論文。
林建三,2009,環境工程概論,台北市:鼎茂圖書出版股份有限公司。
洪梓彬,2009,「常壓微波電漿轉化乙醇產氫之研究」,國立高雄應用科技大學化學工程與材料工程所,碩士論文。
曾錦清,2004,「電漿岩化技術之發展與應用」,電漿處理在環境工程之應用技術研習會。
黃于峰,2010,「微波誘發裂解生質廢棄物之研究」,國立臺灣大學環境工程所,博士論文。
楊超棨,2010,「介電質常壓電漿產生器之開發及其於質譜分析之應用」,國立中山大學機械與機電工程所,碩士論文。
經濟部能源局,2010,能源產業技術白皮書。
經濟部能源局,2011,http://www.moeaboe.gov.tw/ 。
廖瑞可,2008,「生質廢棄物之熱處理資源化研究」,國立臺灣大學環境工程所,碩士論文。
蔣本基、曾錦清、張怡怡、葉茂榮、蔡佳娟、陳郁文、傅耀宗,2005,「電漿氣化及廢棄物轉化能源之技術調查與評估」,行政院原子能委員會委託研究計畫,942001INER005。
顧洋、申永順,2005,「國際間溫室氣體管理標準化之發展及因應策略」,科學與工程技術期刊,第三期,1–22。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code