Responsive image
博碩士論文 etd-0716112-194914 詳細資訊
Title page for etd-0716112-194914
論文名稱
Title
運用離子液體共催化以提升生質柴油產率之研究
Highly efficient procedure for the synthesis of biodiesel using ionic liquid as catalyst
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-13
繳交日期
Date of Submission
2012-07-16
關鍵字
Keywords
廢食用油、轉酯化反應、兩性離子液體、生質柴油、離子液體、痲瘋樹油
zwitterionic liquid, Jatropha oil, Transesterification, Biodiesel, Waste cooking oil, Ionic liquid
統計
Statistics
本論文已被瀏覽 5666 次,被下載 1472
The thesis/dissertation has been browsed 5666 times, has been downloaded 1472 times.
中文摘要
本研究分別以痲瘋樹油、廢食用油及大豆油為原料油,探討不同催化劑濃度、反應時間、反應溫度、醇油比及催化劑種類對生質柴油產率之影響,且利用微波加熱縮短轉酯化反應所需時間使反應更完全。本研究以痲瘋樹油、廢食用油及大豆油當原料油,用微波加熱生產生質柴油之最佳操作條件中,分別添加[PyrMe][HSO4]、[PyrMeBuS][HSO4]及[MorMeA][Br]等三種不同類型離子液體與兩性離子液體進行共催化當催化劑。其中以大豆油當原料油,在反應時間6 min、反應溫度70 ℃及醇油比9:1時,添加[MorMeA][Br]催化效果為最佳99.4%。而在最佳反應條件下,比較添加含硫酸根之離子液體與含硫酸根之兩性離子液體之催化效果,其產率分別為97.2%與98.7%,由研究結果可以得知添加兩性離子液體進行共催化較同性質之離子液體具提升生質柴油產率之效果。比較痲瘋樹油與大豆油之最佳操作條件為氫氧化鈉濃度0.75 wt%添加[MorMeA][Br]1.00 wt%、醇油比9:1、反應時間6 min及反應溫度70 ℃可得最佳產率98.5%與99.4%。而廢食用油之最佳操作條件為氫氧化鈉濃度0.75 wt%添加[MorMeA][Br]1.00 wt%、醇油比9:1、反應時間7 min及反應溫度70 ℃可得最佳產率98.1%。其原因為廢食用油中含有油炸食物後所殘留之雜質,導致其產率較低且需較長之反應時間。
Abstract
This study used jatropha oil, waste cooing oil, and soybean oil as the raw materials for investigating effects of catalyst concentration, reaction time, reaction temperature, methanol-to-oil ratio, and catalyst types on biodiesel yield. The authors also heated up the oil to speed up the transesterification and to make the reaction more complete. Jatropha oil, waste cooing oil, and soybean oil were used as the raw materials, and three types of ionic liquid or zwitterionic liquid, [PyrMe][HSO4], [PyrMeBuS][HSO4], and [MorMeA][Br], were added as catalysts for co-catalysis while heating the oil raw materials to create the best operational condition for biodiesel production. For soybean oil used as the raw material, the best catalyzing effect (a 99.4% yield) was achieved by adding [MorMeA][Br] while the reaction time was 6min, reaction temperature was 70 ℃, and the methanol-to-oil ratio was 9:1. Under the best reaction condition, catalyzing effect was compared between the addition of sulfate-containing ionic liquid and sulfate-containing zwitterionic liquid. The yield of the addition of sulfate-containing ionic liquid and sulfate-containing zwitterionic liquid were 97.2% and 98.7% respectively. It can be found from this study that for increasing biodiesel yield, the addition of zwitterionic liquid for co-catalysis is more effective than the addition of homogeneous ionic liquid. Comparing the best operational condition between jatropha oil and soybean oil, the best yield of jatropha oil and soybean oil was 98.5% and 99.4% respectively, while the concentration of sodium hydroxide was 0.75 wt%, [MorMeA][Br] of 1.00 wt% was added, the methanol-to-oil ratio was 9:1, the reaction time was 6 min, and the reaction temperature was 70℃. As for disposed cooking oil, the best operational condition rendered a yield of 98.1% when the concentration of sodium hydroxide was 0.75 wt%, [MorMeA][Br] of 1.00 wt% was added, the methanol-to-oil ratio was 9:1, the reaction time was 7 min, and the reaction temperature was 70℃. For waste cooking oil, because of the containing of impurities from frying, the yield was slightly lower and the reaction time was longer.
目次 Table of Contents
謝誌 I
摘要 II
ABSTRACT III
目錄 V
圖次 VIII
表次 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目標 2
第二章 文獻回顧 3
2-1 能源概況 3
2.2 生質柴油特性 5
2.3 生質柴油之原料 9
2.3.1 廢食用油 9
2.3.2 痲瘋樹油 10
2.4 生質柴油製造與方法 14
2.5 微波加熱 19
2.6 生產生質柴油之催化劑 20
2.6.1 酸性催化劑 20
2.6.2 鹼性催化劑 24
2.6.3 離子液體 27
2.7 離子液體與兩性離子液體之應用 28
2.7.1 離子液體之應用 28
2.7.2 兩性離子液體之應用 29
第三章 研究方法 31
3.1 研究架構及流程 31
3.2 生質柴油製作 33
3.2.1 實驗材料與藥品 33
3.2.2 實驗設備 33
3.3 酸價及皂化價測定 34
3.3.1 皂化價測定之步驟 34
3.3.2 酸價測定之步驟 35
3.4 離子液體製備 37
3.5 生質柴油製備與方法 39
3.5.1 微波加熱製備生質柴油 39
3.6 產率分析 42
第四章 結果與討論 45
4.1 以痲瘋樹油為原料油不同反應參數對生質柴油產率之影響 45
4.1.1 氫氧化鈉濃度對生質柴油產率之影響 45
4.1.2 添加同比例離子液體共催化其濃度對生質柴油產率之影響 46
4.1.3 固定離子液體濃度(1.00 wt%)下不同氫氧化鈉濃度對生質柴油產率之影響 47
4.1.4 固定氫氧化鈉濃度(0.75 wt%)下不同離子液體濃度對生質柴油產率之影響 48
4.1.5 比較氫氧化鈉與添加離子液體共催化下微波時間對生質柴油產率之影響 49
4.1.6 比較氫氧化鈉與添加離子液體共催化下微波溫度對生質柴油產率之影響 53
4.1.7 比較氫氧化鈉與添加離子液體共催化下醇油比對生質柴油產率之影響 56
4.1.8 比較以痲瘋樹油為原料油不同反應參數對生質柴油產率之影響 59
4.2 以廢食用油為原料油不同反應參數對生質柴油產率之影響 61
4.2.1 氫氧化鈉濃度對生質柴油產率之影響 61
4.2.2 添加同比例離子液體共催化其濃度對生質柴油產率之影響 62
4.2.3 固定離子液體濃度(1.00 wt%)下不同氫氧化鈉濃度對生質柴油產率之影響 63
4.2.4 固定氫氧化鈉濃度(0.75 wt%)下不同離子液體濃度對生質柴油產率之影響 64
4.2.5 比較氫氧化鈉與添加離子液體共催化下微波時間對生質柴油產率之影響 66
4.2.6 比較氫氧化鈉與添加離子液體共催化下微波溫度對生質柴油產率之影響 69
4.2.7 比較氫氧化鈉與添加離子液體共催化下醇油比對生質柴油產率之影響 72
4.2.8 比較以廢食用油為原料油不同反應參數對生質柴油產率之影響 76
4.3 以大豆油為原料油不同反應參數對生質柴油產率之影響 78
4.3.1 氫氧化鈉濃度對生質柴油產率之影響 78
4.3.2 以同比例(1:1)離子液體共催化其濃度對生質柴油產率之影響 79
4.3.3 固定離子液體濃度(1.00 wt%)下不同氫氧化鈉濃度對生質柴油產率之影響 80
4.3.4 固定氫氧化鈉濃度(0.75 wt%)下不同離子液體濃度對生質柴油產率之影響 81
4.3.5比較氫氧化鈉與添加離子液體共催化下微波時間對生質柴油產率之影響 82
4.3.6 比較氫氧化鈉與添加離子液體共催化下微波溫度對生質柴油產率之影響 86
4.3.7 比較氫氧化鈉與添加離子液體共催化下醇油比對生質柴油產率之影響 89
4.3.8 比較以大豆油為原料油應用共催化方式對生質柴油產率之影響 92
4.4 不同油品比較對生質柴油產率之影響 94
4.4.1 反應時間對產率之影響 94
4.4.2 微波溫度與醇油比對產率之影響 95
第五章 結論與建議 98
5.1 結論 98
5.2 建議 99
參考文獻 100
附錄 A 附A-1
參考文獻 References
Abelson, P.H., 1995. Renewable liquid fuels. Science 268, 268 – 955.
Adams, C., Peters, J.F., Rand, M.C., Schroer, B.J., Ziemke, M.C., 1983. Investigation of soybean oil as a diesel fuel extender: endurance tests. Journal of the American Oil Chemists' Society 60, 1574 -1579
Agarwal, M., Chauhan, G., Chaurasia, S.P., Singh, K., 2012. Study of catalytic
behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel
production. Journal of the Taiwan Institute of Chemical Engineers 43 89–94.
Amish, P., Vyasa, N., Subrahmanyama, Patel, P.A., 2009. Production
of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid
catalyst. Fuel 88, 625–628.
Azcan, N., Danisman, A., 2008. Microwave assisted transesterification of rapeseed oil.
Fuels 87, 1781–1788.
Balat, M., 2011. Potential alternatives to edible oils for biodiesel production – A
review of current work. Energy Conversion and Management 52 , 1479–1492.
Banković-Ilić, I.B., Stamenković, O.S., Veljković, V.B., 2012. Biodiesel production
from non-edible plant oils. Renewable and Sustainable Energy Reviews 16,
3621– 3647.
Billaud, F., Dominguez, V., Broutin, P., Busson, C., 1995. Production of
hydrocarbons by pyrolysis of methyl esters from rapeseed oil. Journal of the
American Oil Chemists’ Society 72, 1149 - 1154.
Binnemans, K. 2005. Ionic Liquid Crystals. Chemical Reviews, 105, 4148-4204.
Borges, M.E., Diaz, L., 2012. Recent developments on heterogeneous catalysts for
biodiesel production by oil esterification and transesterification reactions: A
review. Renewable and Sustainable Energy Reviews 16, 2839–2849.
Canakci, M., Gerpan, J.V., 1999. Biodiesel production via acid catalysis. Transactions
of the American Society of Agricultural Engineers 42, 1203 – 1210.
Cao, F., Chen. Y., Zhai, F., Li, J., Wang, J., Wang, X., 2008. Biodiesel production
from high acid value waste frying oil catalyzed by superacid heteropolyacid.
Biotechnol Bioeng 101, 93-100.
Carpio, R. A., King, L.A., Kibler, F. C., Fannin, A.A., 1979. Densities of
101
AlCl,-Rich, Molten AlCl,-LiCl Mixtures. Journal of Chemical and Engineering
Data 24, 22-24.
Cetinkaya, M., Karaosmanoglu, F., 2004. Optimisation of base-catalysed
transesterification reaction of used cooking oil. Energy Fuels 18, 1888 - 1895.
Chai, F., Cao, F.H., Zhai, F.Y., Chen, Y., Wang, X.H., Su, Z.M., 2007.
Transesterification of Vegetable Oil to Biodiesel using a Heteropolyacid Solid
Catalyst. Advances Synthesis & Catalysis 349, 1057 – 1065.
Crabbe, E., Nolasco-Hipolito, C., Kobayashi, G., Sonomoto, K., Ishizaki, A., 2001.
Biodiesel production from crude palm oil and evaluation of butanol extraction
and fuel properties. Process Biochemistry 37, 65 - 71.
Cull, S. G., Holbrey, J.D., Vargas-Mora, V., Seddon, K.R., Lye, G.J., 2000.
Biotechnology and Bioengineering 69, 227-233.
Davis, J.H., Wierzbicki, A., 2000. In Proceedings of the symposium on advances in
solvent selection and substitution for extraction; American Institute of Chemical
Engineers: New York.
Davis, J.H., 2004. Chemistry Letters 33, 1072-1077.
Demirbas, A., 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic
supercritical alcohol transesterifications and other methods: a survey. Energy
Convers Manage 44, 2093 - 2109.
Demirbas, A., 2005. Biodiesel Production from Vegetable Oils via Catalytic and
Non-catalytic Supercritical Methanol Transesterification Methods. Prog. Energy
Combust. Sci. 31, 466-487.
Demirbas, A., 2006. Biodiesel production via non-catalytic SCF method and biodiesel
fuel characteristics. Energy Conservation and Management 47, 2271 – 2281.
Demirbas, A., 2007. Recent developments in biodiesel fuels. International Journal of
Green Energy 4, 15–26.
Dorado, M.P., Ballesteros, E., Lopez, F.J., Mittelbach, M., 2004. Energy optimization
of alkali-catalyzed transesterification of brassica carinata oil for biodiesel
production. Fuels 18. 77 - 83.
Doyle, M., Choi, S.K., Proulx, G., 2000. Journal of the Electrochemical Society 147,
34-37.
Dupont, J., Souza, de R.F., Suarez, P.A.Z., 2002. Chemical Reviews 102, 3667-3691.
Earle, M.J., Seddon, K.R., 2000. Ionic liquids. Green solvents for the future. Pure and
102
Applied Chemistry 72, 1391 – 1398.
Eevera, T., Rajendran, K., Saradha, S., 2009. Biodiesel production process
optimization and characterization to assess the suitability of the product for
varied environmental conditions. Renewable Energy 34, 762–765.
Encinar, J.M., Gonzalez, J.F., Rodriguez, J.J., Tejedor, A., 2002. Biodiesel fuels from
vegetable oils: Transesterification of Cynara cardunculus L. oils with ethanol.
Energy and Fuels 16, 443 – 450.
Felizardo, P., Correia, M.J.N., Paposo, I., Mendes, J.F., Berkemeier, R., Bordado,
J.M., 2006. Production of biodiesel from waste frying oils. Waste Manage 26,
487 - 494.
Freedman, B., Pryde, E.H., Mounts, T.L., 1984. Variables affecting the yield of fatty
esters from transesterified vegetable oils. Journal of American Oil Chemists
Society 61, 1638 – 1643.
Fukuda, H., Kondo, A., Noda, H., 2001. Biodiesel fuel production by
transesterification of oils. Journal of Bioscience and Bioengineering 92, 405 -
416.
Fung, Y.S., Zhou, R.Q., 1999. Journal of Power Sources 82, 891-895.
Gale, R.J., Gilbert, B., Osteryoung, R.A., 1978. Inorg. Chem17, 2728.
Gerpen, J.V., 2005. Biodiesel processing and production. Fuel Processing Technology
86, 1097 – 1107.
Gordon, C.M., 2011. Applied Catalysis a-General 222, 101-117.
Gruen, D.M., Mcbth, R.L., 1963. Pure Appl. Chem. 6, 23.
Gubitz, G.M., Mittelbach, M., Trabi, M., 1999. Exploitation of the tropical oil seed
plant Jatropha curcas L. Bioresource Technol. 67, 73–82.
Hass, M.J., Michalski, P.J., Runyon, S., Numez, A., Scott, K.M., 2001. Engine
performance of biodiesel fuel prepared from soybean soapstock: A high quality
renewalbe fuel produce from a waste feedstock, Energy & Fuels 15, 1207 -
1212.
Jain, N., Kumar, A., Chauhan, S., Chauhan, S.M.S., 2005. Tetrahedron 61,
1015-1060.
Johnston, M., Holloway, T., 2008. A global comparison of national biodiesel
production potentials. Environmental Science and Technology 41, 7967 – 7973.
Kafuku, G., Mbarawa, M., 2010. Biodiesel production from Croton megalocarpus oil
103
and its process optimization. Fuel 89, 2556–2560.
Khan, A.K., 2002. Research into biodiesel kinetics & catalyst development,
University of Queensland, Brisbane, Queensland.
Koel, M., 2005. Critical Reviews in Analytical Chemistry 35, 177-192.
Leadbeater, N.E., Marco, M., 2002. Org. Lett. 4, 2973.
Leadbeater, N.E., Stencel, L.M., 2006. Easy preparation of biodiesel using microwave
heating. Energy & Fuel 20, 2281 - 2283.
Legreid, G., Reimann, S., Steinbacher, M., Staehelin, J., Young, D., Stemmler, K.,
2007. Measurements of VOCs and NMHCs in a Swiss highway tunnel for
estimation of road transport emissions. Environ Sci Technol 41, 7060-7066.
Lertsathapornsuk, V., Pairintra, R., Krisnangkura, K., Chindaruksa, S., 2003.
Proceeding of the 1st International Conference on Sustainable Energy and Green
Architecture, Bangkok, SE091.
Leung, D.Y.C., Wu, X., Leung, M.K.H., 2010. A review on biodiesel production
using catalyzed transesterification. Applied Energy 87, 1083–1095.
Leung, D.Y.C., Guo, Y., 2006 Transesterification of neat and used frying oil:
optimization for biodiesel production. Fuel Processing Technology 87, 883 –
890.
Li, X., Lu, G., Guo, Y., Guo, Y., Wang, Y., Zhang, Z., Liu, X., Wang, Y., 2007. A
novel solid superbase of Eu2O3/Al2O3 and its catalytic performance for the
transesterification of soybean oil to biodiesel. Catalysis Communications 8,
1969–1972.
Li, Y., Qiu, F., Yang, D., Li, X., Sun, P., 2011. Preparation, characterization and
application of heterogeneous solid base catalyst for biodiesel production from
soybean oil. biomass and bioenergy 35, 2787 -2795.
Liang, J.H., Ren, X.Q., Wang, J.T., Jinag, M., Li, Z.J., 2010. Preparation of biodiesel
by transesterification from cottonseed oil using the basic dication ionic liquids as
catalysts. J Fuel Chem Technol 38, 275-280.
Liang, X., Gao, S., Wu, H., Yang, J., 2009. Highly efficient procedure for the
synthesis of biodiesel from soybean oil. Fuel Processing Technology 90,
701–704.
Liang, X., Gong, G., Wu, H., Yang, J., 2009. Highly efficient procedure for the
synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as
104
catalyst. Fuel 88, 613 - 616.
Lin, L., Ying, D., Chaitep, S., Vittayapadung, S., 2009. Biodiesel production from
crude rice bran oil and properties as fuel. Applied Energy 86, 681–688.
Lin, Y.C., Lee, W.J., Chao, H.R., Wang, S.L., Tsou, T.C., Chang-Chien, G.P., 2008.
Approach for energy saving and pollution reducing by fueling diesel engines
with emulsified biosolution/biodiesel/diesel blends. Environ Sci Technol 42,
3849-3855.
Lin, Y.C., Hsu, K.H., Chen, C.B., 2011. Experimental investigation of the
performance and emissions of a heavy-duty diesel engine fueled with waste
cooking oil biodiesel/ultra-low sulfur diesel blends. Energy 36, 241-248.
Liu, J.F., Jonsson, J.A., Jiang, G.B., 2005. Trac-Trends in Analytical Chemistry 24,
20-27.
Liu, X., He, H., Wang, Y., Zhu, S., Piao, X., 2008. Transesterification of soybean oil
to biodiesel using CaO as a solid basecatalyst. Fuel 87, 216–221.
Lou, W.Y., Zong, M.H., Duan, Z.Q., 2008. Efficient production of biodiesel from
high free fatty acid-containing waste oils using various carbohydrate-derived
solid acid catalysts. Bioresource Technology 99, 8752–8758.
Ma, F., Clements, L.D., Hanna, M.A., 1998. The effects of catalyst, free fatty acids
and water on transesterification of beef tallow. Transactions of the American
Society of Agricultural Engineers 41, 1261 – 1264.
Ma, F., Hanna, M.A., 1999. Biodiesel production: a review. Bioresource Technology
70, 1 - 15.
Mamantov, G., Chen, G.S., Xiao, H., Yang, Y., 1995. and Hondrogiannis, E.
J.Electrochem. Soc. 142, 1758.
Majewski, M.W., Pollack, S.A., Curtis-Palmer, V.A., 2009, Diphenylammonium salt
catalysts for microwave assisted triglyceride transesterification of corn and
soybean oil for biodiesel production. Tetrahedron Letters 50, 5175-5177.
Martinez-Herrera, J., Siddhuraju, P., Francis, G., Davila-Ortiz, G., Becker, K., 2006.
Chemical composition, toxic/antimetabolic constituents, and effects of different
treatments on their levels, in four provenances of Jatropha curcas L. from
Mexico. Food Chem. 96, 80–89.
Meher, L.C., Vidya, S.S., Dharmagadda, S.N.N., 2006. Optimization of
alkali-catalyzed transesteriWcation of Pongamia pinnata oil for production of
105
biodiesel. Bioresource Technology 97, 1392 – 1397.
Mukesh Kumar Modi, J.R.C. Reddy, B.V.S.K. Rao, R.B.N. Prasad., 2007.
Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as
acyl acceptor. Bioresource Technology 98, 1260–1264.
Nardi, J.C., Hussey, C.L., King, L.A., 1978. U,S. 4,122,245.
Nguyen, D.Q., Bae, H.W., Jeon, E.H., Lee, J.S., Cheong, M., Kim, H., Kim, H.S., Lee,
H., 2008. Zwitterionic imidazolium compounds with high cathodic stability as
additives for lithium battery electrolytes. Journal of Power Sources 183,
303–309.
Ohno, H., 2005. Electrochemical Aspects of Ionic Liquids; John Wiley & Sons: New
Jersey.
Olivier, H., 1999. Journal of Molecular Catalysis a-Chemical 146, 285-289.
Papageorgiou, N., Athanassov, Y., Armand, M., Bonhote, P., Pettersson, H., Azam,
A., Gratzel, M., 1996. Journal of the Electrochemical Society 143, 3099-3108.
Patil, P., Deng, S., Rhodes, I., Lammers, P.J., 2010. Conversion of waste cooking oil
to biodiesel using ferric sulfate and supercritical methanol processes. Fuel 89,
360 - 364.
Perin, G., Alvaro, G., Westphal, E., Viana, L.H., Jacob, R.G., Lenardao, E.J., D’Oca,
M.G.M., 2008. Transesterification of castor oil assisted by microwave irradiation.
Fuel, 87, 2838 - 2841.
Phillips, J., Osteryoung, R.A.J., 1977. Electrochem. Soc. 124, 1465.
Qian, J., Shi, H., Yun, Z., 2010. Preparation of biodiesel from Jatropha curcas L. oil
produced by two-phase solvent extraction. Bioresource Technology 101,
7025–7031.
Raimondi, F., Scherer, G.G., Kotz, R., Wokaun, A., 2005. Angewandte
Chemie-International Edition 44, 2190-2209.
Ramadhas, A.S., Jayaraj, S., Muraleedharan, C., 2005. Biodiesel production from high
FFA rubber seed oil. Fuel 84, 335 – 340.
Rashid, U., Anwar, F., Knothe, G., 2009. Evaluation of biodiesel obtained from
cottonseed oil. Fuel Processing Technology 90, 1157 – 1163.
Refaat, A.A., El Sheltawy, S.T., 2008a. Time Factor in Microwave-enhanced
Biodiesel Production. WSEAS Transactions on Environment and Development 4,
279 - 288.
106
Refaat, A.A., Sheltawy, E1, S.T., Sadek, K.U., 2008b. Optimum reaction time,
performance and exhaust emissions of biodiesel produced by microwave
irradiation. International journal of Environmental Science and Technology 5,
315 - 322.
Rogers, R.D., Seddon, K.R., 2002. Ionic Liquids : Applications for Green Chemistry;
American Chemical Society: Washington, DC.
Sugimura, R., Qiao, K., Tomida, D., Yokoyama, C., 2007. Immobilization of acidic
ionic liquids by copolymerization with styrene and their catalytic use for acetal
formation. Catalysis Communications 8 , 770–772.
Sahoo, P.K., Das, L.M., 2009. Process optimization for biodiesel production from
Jatropha, Karanja and Polanga oils. Fuel 88, 1588–1594.
Saifuddin, N., Chua, K.H., 2004. Production of Ethyl Ester (Biodiesel) from used
Frying Oil: Optimization of Transesterification Process using Microwave
Irradiation Malaysian Journal of Chemistry 6, 1077 – 1082.
Schmook, B., Seralta-Peraza, L., Ku Vera, J., 1997. Jatropha curcas: distribution and
uses in the Yucatan Peninsula. In: Proceedings of the First International
Symposium on Biofuels and Industrial Products from Jatropha curcas and Other
Tropical Oil Seed Plants, Managua, Nicaragua. performance and emission.
Biomass and bioenergy 20, 317-325.
Schwab, A.W., Bagby, M.O., Freedman, B., 1987. Evaluation of biodiesel obtained
from cottonseed oil. Fuel 66, 1372 – 1378.
Schwab, A.W., Dykstra, G.J., Selke, E., Sorenson, S.C., Pryde, E.H., 1988. Diesel
fuel from thermal decomposition of soybean oil. Journal of the American Oil
Chemists’ Society 65, 1781 - 1786.
Sharma, Y.C., Singh, B., 2008. Development of biodiesel from karanja, a tree found
in rural India. Fuel 87, 1740 - 1742.
Sharma, Y.C., Singh, B., 2009. Development of biodiesel: Current scenario.
Renewable and Sustainable Energy Reviews 19, 1646 – 1651.
Shibasaki-Kitakawa, N., Honda, H., Kuribayashi, H., Toda, T., Fukumura, T.,
Yonemoto, T., 2007. Biodiesel production using anionic ion-exchange resin as
heterogeneous catalyst. Bioresource Technology 98, 416 – 421.
Shu, Q., Yang, B., Yuan, H., Qing, S., Zhu, G., 2007. Synthesis of biodiesel from
soybean oil and methanol catalyzed by zeolite beta modified with La3+.
107
Catalysis Communications 8, 2159 - 2165.
Silva, C.C.C.M., Ribeiro, N.F.P., Souza, M.M.V.M., Aranda, D.A.G., 2010. Biodiesel
production from soybean oil and methanol using hydrotalcites as catalyst. Fuel
Processing Technology 91, 205–210.
Singh, S.P., Singh, D., 2010. Biodiesel production through the use of different sources
and characterization of oils and their esters as the substitute of diesel: A review.
Renewable and Sustainable Energy Reviews 14, 200–216.
Stafford, G.R.J., 1994. Electrochem. Soc. 141, 945.
Suarez, P.A.Z., Dullius, J.E.L., Einloft, S., DeSouza, R.F., Dupont, J., 1996.
Polyhedron 15, 1217-1219.
Subramanian, R., Nandini, K.E., Sheila, P.M., Gopalakrishna A.G., Raghavarao,
K.S.M.S., Nakajima, M., Kimura, T., Maekawa, T., 2000. Membrane processing
of used frying oils. Journal of American Oil Chemist’s Society 77, 323 – 328.
Sun, I.W., Edwards, A.G., Mamantov, G.J., 1993. Electrochem. Soc. 140, 2733.
Tang, Z., Wang, L., Yang, J., 2007. Transesterification of the crude Jatropha curcas L.
oil catalyzed by micro-NaOH in supercritical and subcritical methanol. Eur. J.
Lipid Sci. Technol. 109, 585–590.
Tiwari, A.K., Kumar, A., Raheman, H., 2007. Biodiesel production from jatropha
oil(Jatropha curcas) with high free fatty acids: an optimized process. Biomass
and Bioenergy 31, 569 – 575.
Tomasevic, A.V., Siler-Marinkovic, S.S., 2003. Methanolysis of used frying oil. Fuel
Process Technol 81, 1 - 6.
Tsai, J.H., Chen, S.J., Huang, K.L., Lin, Y.C., Lee, W.J., Lin, C.C., Lin, W.Y., 2010.
PM, Carbon, and PAH emissions from a diesel generator fuelled with
soy-biodiesel blends. J Hazard Mater. 179, 237-243.
Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S., 2006. Comparison of two different
processes to synthesize biodiesel by waste cooking oil. Journal of American Oil
Chemist’s Society 252, 107 – 112.
Wang, Y., Ou, S., Liu, P., Zhang, Z., 2007. Preparation of biodiesel from waste
cooking oil via two-step catalyzed process. Energy Convers Manage 248, 184 -
188.
Wasserscheid, P., Keim, W., 2000. Angewandte Chemie-International Edition 39,
3773-3789.
108
Wasserscheid, P., Welton, T., 2003. Ionic Liquid in Synthesis; Wiley-VCH:
Weinheim,
Welton, T., 1999. Room-temperature ionic liquids, solvents for synthesis and catalysis.
chemical reviews 99, 2071 - 2083.
Welton, T., 2004. Coordination Chemistry Reviews 248, 2459-2477.
Wen, Z., Yu, X., Tu, S.T., Yan, J., Dahlquist, E., 2010. Biodiesel production from
waste cooking oil catalyzed by TiO2–MgO mixed oxides. Bioresource
Technology 101, 9570–9576.
Wilkes, J. S., Levisky, J.A., Wilson, R.A., Hussey, C.L., 1982. Inorg. Chem., 21,
1263.
Wilkes, J.S., Zaworotko, M.J.J., 1992. Chem. Soc. Chem. Commun., 965.
Wilkes, J.S., 2002. A short history of ionic liquids – from molten salts to neoteric
solvents. Green Chemistry 4, 73 - 80.
Xie, W., Huang, X., 2006. Synthesis of biodiesel from soybean oil using
heterogeneous KF/ZnO catalyst. Catalysis Letters 107, Nos. 1–2, 53-59.
Xie, W., Li, H., 2006. Alumina-supported potassium iodide as a heterogeneous catal
yst for biodiesel production from soybean oil. Journal of Molecular Catalysis A:
Chemical 255, 1–9.
Yuan, C.S., Lin, Y.C., Tsai, C.H., Wu, C.C., Lin, Y.S., 2009. Reducing carbonyl
emissions from a heavy-duty diesel engine at US transient cycle test by use of
paraffinic/biodiesel blends. Atmos Environ 43, 6175-6181.
Yuan, H., Yang, B.L., Zhu, G.L., 2009. Synthesis of Biodiesel Using Microwave
Absorption Catalysts. Energy & Fuels 23, 548 - 552.
Yang, Z., Zhang, K.P., Huang, Y., Wang, Z., 2010. Both hydrolytic and
transesterification activities of Penicillium expansum lipaseare significantly
enhanced in ionic liquid [BMIm][PF6]. Journal of Molecular Catalysis B:
Enzymatic 63, 23 - 30.
Yin, J.Z., Ma, Z., Shang, Z.Y., Hu, D.P., Xiu, Z.L., 2012. Biodiesel production from
soybean oil transesterification in subcritical methanol with K3PO4 as a catalyst.
Fuel 93, 284–287.
Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S., 2006. Comparison of two different
processes to synthesize biodiesel by waste cooking oil. Journal of Molecular
Catalysis A: Chemical 252, 107–112.
109
Zhang, Y., Dube, M.A., McLean, D.D., Kates, M., 2003. Biodiesel production from
waste cooking oil. 1. Process design and technological assessment. Bioresource
Technology 89, 1 – 16.
Zhang, Y., Dube, M.A., McLean, D.D., Kates, M., 2003. Biodiesel production from
waste cooking oil: 2 Economic assessment and sensitivity analysis. Bioresource
Technologyl 90, 229 – 240.
Zhang, S., Zu, Y.G., Fu, Y.J., Luo M., Zhang, D.Y., 2010. Rapid microwave-assisted
transesterification of yellow horn oil to biodieselusing a heteropolyacid solid
catalyst. Thomas Efferth cBioresource Technology 101, 931 – 936.
Zhao, H., Xia, S.Q., Ma, P.S., 2005. Journal of Chemical Technology and
Biotechnology 80, 1089-1096.
Zhu, H., Wu, Z., Chen, Y., Zhang, P., Duan, S., Liu, X., Mao, Z., 2006. Preparation of
Biodiesel Catalyzed by Solid Super Base of Calcium Oxide and Its Refining
Process. Chin J Catal 27, 391–396.
Zullaikah, S., Lai, C.C., Vali, S.R., Ju Y.H., 2005. A Two-step Acid-catalyzed
Process for the Production of Biodiesel from Rice Bran Oil, Bioresource Technol
97, 1889 – 1896.
李智傑,「酸性觸媒在生質柴油製程之研究」,國立成功大學化學工程學系,碩
士論文,2008。
陳恭府,「超低硫柴油摻配生質柴油之油品特性及污染排放分析」,國立中山大
學環境工程研究所碩士論文,2006。
陳家鐘,「除草劑劑型簡介」,中華民國雜草學會會刊,第二十六卷,第二期,
2005。
陳介武,2000,「生化柴油發展與趨勢」,黃豆之工業應用及環保。
環保署廢管處, 2012 , 全國事業廢棄物申報統計,
http://waste.epa.gov.tw/prog/IndexFrame.asp?Func=5
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code