Responsive image
博碩士論文 etd-0716112-205715 詳細資訊
Title page for etd-0716112-205715
論文名稱
Title
序列效應對鳥嘌呤胞嘧啶鹼基對自由基陰離子與陽離子之質子轉移反應的影響
Sequence effects on the proton-transfer reaction of the guanine-cytosine base pair radical anion and cation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-25
繳交日期
Date of Submission
2012-07-16
關鍵字
Keywords
電子親和力、游離能、密度泛函理論、質子轉移反應、胞嘧啶、鳥嘌呤
electron affinity, ionization potential, cytosine, DFT, guanine, proton transfer reaction
統計
Statistics
本論文已被瀏覽 5674 次,被下載 691
The thesis/dissertation has been browsed 5674 times, has been downloaded 691 times.
中文摘要
在許多生物及化學的現象和過程中,DNA鹼基對的質子轉移反應扮演著很重要的角色,例如基因的突變、輻射導致DNA的傷害,以及電荷在DNA中傳輸的動力學,對於單一鹼基對的化學變化已經有許多文獻報告,但是有關鹼基對在DNA環境中的影響之研究比較少,因此本報告中我們針對序列效應如何影響(G:C)• 沿著氫鍵N1(G)…N3(C)之質子轉移反應,採用密度泛函理論與ONIOM 分子分層
計算法求得反應之活化能與反應能,以及G:C 鹼基對穩定度(如絕熱電子親和力與
絕熱游離能)在不同的鹼基對三聚物。(G:C)· ± 沿著氫鍵N1(G)-H×××N3(C)之質子轉移
反應在序列效應下,G:C 之還原作用與氧化作用所獲得或失去的電子與電荷皆定域
在(X:Y)(G:C)· ± (X:Y)中間 G:C。理論計算結果顯示在氣相條件下,因為
(X:Y)(G:C)· ± (X:Y)之額外電子與電洞以及電荷皆定域在中間G:C,鹼基對三聚物
之鄰近鹼基對對中間G:C 鹼基對影響可以用靜電作用力模型解釋􀇶而且在水溶液
條件下,序列性應之相依性變得不明顯是因為水分子對此鹼基對三聚物之鄰近鹼
基對具有遮蔽作用。序列效應對DNA 的電子轉移以及LEE 造成DNA 傷害的影響
也會被水合效應削弱。還有對G:C 鹼基對之中間另一氫鍵N2(G)-HO2(C)之質子
轉移反應是否因堆疊作用與水合作用而促使反應進行。
Abstract
The formation of base pair radical anions and cations is closely related to many fascinating research fields in biology and chemistry such as genetic mutation, radiation-induced DNA damage and dynamics of charge transfer in DNA. However, the relevant knowledge so far mainly comes from studies on isolated base pair radical anions and cations, and their behavior in the DNA environment is less understood. In this study, we focus on how the nucleobase sequence affects the properties of the guanine–cytosine (G:C) base pair radical anion and cation. The energetic barrier and reaction energy for the proton transfer along the N1(G)–H•••N3(C) hydrogen bond and the stability of (G:C)• (i.e., electron affinity and ionization potential of G:C) embedded in different sequences of base-pair trimer were evaluated using density functional theory and two-layer ONIOM method. The computational results demonstrated that the presence of neighboring base pairs has an important influence on the behavior of (G:C)• in the gas phase. The excess electron and positive hole were found to be localized on the embedded G:C and the charge leakage to neighboring base pairs was very minor in all of the investigated sequences. Accordingly, the sequence behavior of the proton transfer reaction and the stability of (G:C)• is chiefly governed by electrostatic interactions with adjacent base pairs. However, the effect of base stacking, due to its electrostatic nature, is severely screened upon hydration, and thus, the sequence dependence of the properties of (G:C)• in aqueous environment becomes relatively weak and less than that observed in the gas phase. The effect of geometry relaxation associated with neighboring base pairs as well as the possibility of proton transfer along the N2(G)–H•••O2(C) channel have also been investigated. The implications of the present findings to the electron transport and radiation damage of DNA are discussed.
目次 Table of Contents
目 錄
論文審定書………………………………………………………………………….. i
中文摘要…………………………………………………………………………......ii
英文摘要……………………………………………………………………….…... iii
目錄………………………………………………………………………………….iv
圖次………………………………………………………………………………….vi
表次………………………………………………………………………………...viii
英文縮寫對照表……………………………………………………………………..x
第 一 章 前言……………………………………………………………………… 1
第 二 章 鹼基序列效應對(G:C)•−之質子轉移反應與穩定度的影響………….....9
2.1 分子模型與計算方.. ………………………………………………......….9
2.2 結果與討…………………………………………………………………..11
2.2.1 額外電子的分佈…………………………………………...……….....11
2.2.2 質子轉移反應對序列的相依性…………………………………...….12
2.2.3 絕熱電子親和力對序列的相依性…………………………..………..19
2.2.4 鄰近鹼基對的幾何鬆弛效應…………………………………………21
2.2.5 沿著N2(G)-HO2(C)氫鍵的質子轉移…………………………...…23
2.2.6 與DNA 的電子傳輸與輻射傷害的關連……………………….…....25
2-3 結論……………………………………………………………………….25
第 三 章 鹼基序列效應對(G:C)·+之之質子轉移反應與穩定度的影響…………27
3.1 分子模型與計算方法…………………………………………………….27
3.2 結果與討論………………………………………………………………..29
3.2.1 環境效應對(G:C)·+之質子轉移反應的影響………………………..29
3.2.2 (X:Y)(G:C)·+(X:Y)正電洞的分佈……………………………………34
3.2.3 質子轉移反應對序列的相依性……………………………………..35
3.2.4 絕熱游離能對序列效應之相依性…………………………..……....41
v
3.2.5 沿著N2(G)-H×××O2(C)氫鍵的質子轉移……………………....……42
3.2.6 泛函數M06-2X 與B3LYP 之比較………………………….……..45
3.3 結論……………………………………………………………….….…...48
第 四 章 總結論…………………………………………………….………….….50
第 五 章 參考文獻……………………………………………………………..….52−
參考文獻 References
1. Löwdin, P. O. ReV. Mod. Phys. 1963, 35, 724.
2. Löwdin, P. O. AdV. Quantum Chem. 1965, 2, 213.
3. Da﹐bkowska, I.; Rak, J.; Gutowski, M. Eur. Phys. J. D 2005, 35, 429.
4. Gu, J.; Wang, J.; Rak, J.; Leszczynski, J. Angew. Chem., Int. Ed. 2007, 46, 3479.
5. Sobolewski, A. L.; Domcke, W. Phys. Chem. Chem. Phys. 2004, 6, 2763.
6. Sobolewski, A. L.; Domcke, W.; Hättig, C. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17903.
7. Perun, S.; Sobolewski, A. L.; Domcke, W. J. Phys. Chem. A 2006, 110, 9031.
8. Schwalb, N. K.; Temps, F. J. Am. Chem. Soc. 2007, 129, 9272.
9. Wagenknecht, H. A. Angew. Chem., Int. Ed. 2003, 42, 2454.
10. Ito, T.; Rokita, S. E. Angew. Chem., Int. Ed. 2004, 43, 1839.
11. Ghosh, A. K.; Schuster, G. B. J. Am. Chem. Soc. 2006, 128, 4172.
12. Florián, J.; Leszczyñski, J. J. Am. Chem. Soc. 1996, 118, 3010.
13. Gorb, L.; Podolyan, Y.; Dziekonski, P.; Sokalski, W. A.; Leszczynski, J. J. Am. Chem. Soc. 2004, 126, 10119.
14. Villani, G. Chem. Phys. 2006, 324, 438.
15. Villani, G. Chem. Phys. 2005, 316, 1.
16. Noguera, M.; Sodupe, M.; Bertrán, J. Theor. Chem. Acc. 2007, 118, 113.
17. Guallar, V.; Douhal, A.; Moreno, M.; Lluch, J. M. J. Phys. Chem. A 1999, 103, 6251.
18. Bertrán, J.; Oliva, A.; Rodríguez-Santiago, L.; Sodupe, M. J. Am. Chem. Soc. 1998, 120, 8159.
19. Li, X.; Cai, Z.; Sevilla, M. D. J. Phys. Chem. B 2001, 105, 10115.
20. Chen, H. Y.; Chao, I. ChemPhysChem 2004, 5, 1855.
21. Radisic, D.; Bowen, K. H.; Dabkowska, I.; Storoniak, P.; Rak, J.; Gutowski, M. J. Am. Chem. Soc. 2005, 127, 6443.
22. Szyperska, A.; Rak, J.; Leszczynski, J.; Li, X.; Ko, Y. J.; Wang, H ; Bowen, K. H. J. Am. Chem. Soc. 2009, 131, 2663.
23. Cai, Z.; Sevilla, M. D. Top. Curr. Chem. 2004, 237, 103.
24. Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541.
25. Steenken, S.; Jovanovic, S. V. J. Am. Chem. Soc. 1997, 119, 617.
26. Li, X.; Cai, Z.; Sevilla, M. D. J. Phys. Chem. A 2002, 106, 9345.
27. Giese, B. Annu. ReV. Biochem. 2002, 71, 51.
28. Steenken, S.; Telo, J. P.; Novais, H. M.; Candeias, L. P. J. J. Am. Chem. Soc. 1992, 114, 4701.
29. Candeias, L. P.; Steenken, S. J. Am. Chem. Soc. 1989, 111, 1094.
30. Steenken, S. Chem. ReV. 1989, 89, 503.
31. Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2009, 113, 11359.
32 Cerón-Carrasco, J. P.; Requena, A.; Perpète. E. A.; Michaux, C.; Jacquemin, D. J. Chem. Phys. B, 2010, 114, 13439.
33. Gu, J.; Xie, Y.; Schaefer, H. F. J. Chem. Phys. 2007, 127, 155107.
34. Radisic, D,; Bowen, K. H. J.; bkowska, I. D.; Storoniak, P.; Rak, J.; Gutowski, M. J. Am. Chem. Soc. 2005, 127, 6442.
35. Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc. 2003, 125, 10213.
36. Kobayashi, K.; Yamagami, R.; Tagawa, S. J. Phys. Chem. B 2008, 112, 10752.
37. Yamagami, R.; Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc. 2008, 130, 14772.
38. Shafirovich, V.; Dourandin, A.; Geacintov, N. E. J. Phys. Chem. B 2001, 105, 8431.
39. Weatherly, S. C.; Yang, I. V.; Thorp, H. H. J. Am. Chem. Soc. 2001, 123, 1236.
40. Giese, B.; Wessely, S. Chem. Commun. 2001, 2108.
41. Cai, Z.; Gu, Z.; Sevilla, M. D. J. Phys. Chem. B 2000, 104, 10406.
42. Sugiyama, H.; Saito, I. J. Am. Chem. Soc. 1996, 118, 7063.
43. Prat, F.; Houk, K. N.; Foote, C. S. J. Am. Chem. Soc. 1998, 120, 845.
44. Voityuk, A. A.; Michel-Beyerle, M. E.; Rösch, N. Chem. Phys. Lett. 2001, 342, 231.
45. Kobylecka, M.; Leszczynski, J.; Rak, J. J. Am. Chem. Soc. 2008, 130, 15683.
46. Simons, J. Acc. Chem. Res. 2006, 39, 772.
47 Anusiewicz, I.; Berdys, J.; Sobczyk, M.; Skurski, P.; Simons, J. J. Phys. Chem A 2004, 108, 11381.
48. Adhikary, A.; Kumar, A.; Khanduri, D.; Sevilla, M. D. J. Am. Chem. Soc. 2008, 130, 10282.
49. Chen, H. Y.; Kao, C. L.;Hsu, S. C. N. J. Am. Chem. Soc. 2009, 131, 15930.
50. Maseras, F.; Morokuma, K. J. Comput. Chem. 1995, 16, 1170.
51. Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys. 1996, 105, 1959.
52. Matsubara, T.; Sieber, S.; Morokuma, K. Int. J. Quantum Chem.1996, 60, 1101.
53. Svensson, M.; Humbel, S.; Froese, R. D. J.;Matsubara, T.; Sieber, S.; Morokuma, K. J. Phys. Chem. 1996, 100,19357.
54. Svensson, M.; Humbel, S.; Morokuma, K. J. Chem. Phys.1996, 105, 3654.
55. Dapprich, S.; Komáromi, I.; Byun, K. S.;Morokuma, K.; Frisch, M. J. J. Mol. Struct. (THEOCHEM) 1999, 462,1.
56. Vreven, T.; Morokuma, K. J. Comput. Chem. 2000, 21, 1419.
57. Chen, H. Y.; Hsu, S. C. N.; Kao, C. L. Phys. Chem. Chem. Phys. 2010, 12, 1253.
58. Chen, H. Y.;Yeh, S. W.; Hsu, S. C. N.; Kao, C. L.; Dong, T. Y. Phys. Chem. Chem. Phys. 2011, 13, 2674.
59. HyperChem Professional 8.0.3; Hypercube, Inc., 1115 NW 4th Street, Gainesville, FL 32601.
60. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput., 2006, 2, 364.
61. Zhao, Y.; Truhlar, D. G. Acc. Chem. Res., 2008, 41, 157.
62. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision E.01), Gaussian, Inc., Wallingford, CT, 2004.
63. Voityuk, A. A.; Michel-Beyerle M. E.; Rösch, M. Chem. Phys.Lett., 2001, 342, 231.
64. Blancafort, L.; Voityuk, A. A. J. Phys. Chem. A, 2006, 110, 6426.
65. Blancafort, L.; Voityuk, A. A. J. Phys. Chem. A, 2007, 111, 4714.
66. Blancafort, L.; Duran, M.; Poater, J.; Salvador, P.; Simon, S.; Solà, M.; Voityuk, A. A. Theor. Chem. Acc., 2009, 123, 29.
67. Kobylecka, M.; Leszczynski, J.; Rak, J. J. Am. Chem. Soc., 2008, 130, 15683.
68. M. Kobylecka, J. Leszczynski and J. Rak, J. Chem. Phys., 2009, 131, 085103.
69. Félix, M.; Voityuk, A. A. J. Phys. Chem. A, 2008, 112, 9043.
70. Voityuk, A. A. Phys. Chem. Chem. Phys., 2009, 11, 10608.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code