Responsive image
博碩士論文 etd-0716113-153937 詳細資訊
Title page for etd-0716113-153937
論文名稱
Title
薄膜金屬玻璃複合透鏡之可控光場設計研究
The design and fabrication for the controllable optical field of multi-curvature lens with thin film metallic glasses
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-29
繳交日期
Date of Submission
2013-08-16
關鍵字
Keywords
曝光系統、紫外光發光二極體、自由曲面、透鏡設計、金屬玻璃薄膜、光追跡模擬軟體、聚二甲基矽氧烷
TracePro simulation software, PDMS, exposure system, UV LED, free-form surface, thin film metallic glasses, lens design
統計
Statistics
本論文已被瀏覽 5724 次,被下載 0
The thesis/dissertation has been browsed 5724 times, has been downloaded 0 times.
中文摘要
曝光製程是高科技電子產業重要的一環,而以紫外光發光二極體(UV LED)取代傳統汞燈做為曝光燈源也是必然的趨勢。在曝光製程中,曝光範圍內的光能量強度與均勻度直接影響成品輪廓的準確度,因此在不降低均勻度的情況下,提高曝光範圍內的光能量強度是曝光機的主要發展方向。
本文以能量守恆定律及光線折射定律為基礎,利用出光面能量分配方式,設計主要曝光區域的均勻光場型並擬合出符合此條件之自由曲面透鏡,搭配金屬玻璃薄膜作為反射層,將外圍光線收聚回曝光區域以提高光能量強度。透鏡材料之模擬參數選用具有高穿透率的BK7光學玻璃。反射層則選用鋁基金屬玻璃,該材料在紫外光波段的反射率高達80%左右,可有效改善一般純金屬如銀、鎂、銅或其合金在紫外光波段的反射率嚴重衰減問題;此外,由於該材料獨特的非晶相結構,其優異的機械性質可提供曝光燈源抗刮、抗腐蝕等特性。
本文利用TracePro光線追跡模擬軟體進行模擬,針對光輻射照度及均勻度進行分析。根據模擬結果,本研究初步設計之複合透鏡可有提升曝光區域之平均照度約7.6 %,並將均勻度維持於80 %左右;且根據分析結果採用多顆UV LED光源排列搭配均光透鏡,得到高達93 %的均勻度。藉由搭配初步翻製之聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)透鏡,UV LED曝光系統之實際量測均勻度由69.49 %提升至87.06 %,提升率約為25 %,證明本文所設計透鏡之均光效果。實際量測PDMS透鏡搭配反射層之出光效果,在反射層包覆角為40度時,可得到約6.61 %的平均照度提升率以及83.70 %的均勻度。而利用此UV LED曝光系統進行曝光製程,可得到約4%的誤差率,相較於一般曝光系統約10%的誤差率,證明使用UV LED取代傳統曝光燈源之可行性。
Abstract
Exposure process plays an important role in high technology electric industry, and it is an inevitable trend that conventional mercury lamp will be replaced by UV LED (Ultraviolet Light-Emitting Diode). In the exposure process, the intensity and uniformity of light in the exposure area directly influence the precision of products. So how to improve the intensity of light without reducing the uniformity is the main direction.
This article is based on the law of conservation of energy and law of refraction, by distributing the energy of emitting surface, a free form lens with uniform light field of main exposure area can be designed, and a TFMG is used as reflection layer, light outside the exposure area could be concentrated into the area to improve the intensity of light. The optical glass BK7 with high transmittance is applied as the material of lens and molding method is used to fabricating the lens. Al-base TFMG is coating around the lens by multi-gun sputtering method, the reflectance is about 80% at the UV wave band, it can improve the serious decay of reflectance of other pure metal such as Ag, Mg, Cu and their alloy at UV band wave. Beside, excellent scratch resistance and etch resistance could be achieved because of the unique amorphous structure.
This study used TracePro optical software to simulate and analysis the energy intensity and uniformity. According to the result of simulation, the compound lens can improve the average irradiance of exposure area for about 7.6 %, and maintain the uniformity at about 80%. According to the result of simulation, by using multi UV LED combined with light-uniform lens, 93% uniformity can be achieved. By the Polydimethylsiloxane (PDMS) lens, the uniformity measurement of UV LED exposure system can be increased from 69.49 % to 87.06 %. This result proves the effect of light uniform of the lens which we design. According to the measurement results of PDMS lens combined with reflective layer, while the coverage angle of reflective layer is 40°, the average irradiance can be improved by 6.61% and 83.7% uniformity can be obtained as well. After exposure process with PDMS lens, about 4% inaccuracy was obtained, comparing to 10% inaccuracy of general exposure system, it shows that using UV LED to replace conventional exposure lamp is available.
目次 Table of Contents
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究動機與目的 2
1.4 文獻回顧 2
1.5 本文架構 17
第二章 理論基礎 18
2.1幾何光學理論 18
2.1.1 發光點 18
2.1.2 光線概念 19
2.1.3 反射現象 19
2.1.4 折射現象 23
2.1.5 全反射現象 24
2.1.6 吸收現象 25
2.2照明基本單位定義 25
2.2.1 通量 26
2.2.2 強度 27
2.2.3 照度 28
2.2.4 亮度 29
2.3 金屬玻璃材料 30
2.4光學模擬軟體TRACEPRO 31
2.4.1光源模擬設定 31
2.4.2 鏡組模擬設定 32
第三章 研究方法與步驟 34
3.1 研究流程 34
3.2 目標函數之透鏡曲率主體建構 36
3.2.1 設立裸光光源之光場函數 36
3.2.2設立目標光場函數 36
3.2.3光源與出光面能量守恆定律 37
3.2.4 透鏡之光線追跡設計 38
3.3 透鏡主要曲線建構 39
3.3.1 透鏡第一曲面 39
3.3.2 透鏡第二曲面 40
3.4 金屬玻璃反射層建構設計 42
3.5 模擬參數設定 44
3.6 UV LED曝光系統架設 47
3.7 透鏡成型 49
第四章 結果與討論 53
4.1單顆LED與單一透鏡 53
4.1.1單顆LED與透鏡之光型分佈 53
4.1.2目標函數高度調整對均勻度之影響 58
4.2 反射層型態之比較 63
4.3 光源排列比較 67
4.3.1 多顆UV LED幾何排列 67
4.3.2 多顆UV LED幾何排列搭配單一透鏡 71
4.4 PDMS透鏡模擬 72
4.5 量測結果與比較 73
4.4.1 多顆UV LED及搭配透鏡出光效果 73
4.4.2 透鏡搭配反射層之出光效果 80
4.4.3 實際曝光結果 82
第五章 結論與未來展望 85
5.1結論 85
5.2未來展望 85
參考文獻 86
參考文獻 References
參考文獻
[1] N. Holonyak and S. F. Bevacqua, "Coherent (Visible) Light Emission from Ga(As1-Xpx) Junctions," Applied Physics Letters, vol. 1, pp. 82-83, 1962.
[2] M. George, "LEDs for solid state lighting and other emerging applications: status, trends, and challenges," International Society for Optics and Photonics, pp. 594101-594101-10, 2005.
[3] S. Sakai, A. Mori, K. Ishiguchi, K. Kobayashi, T. Kokogawa, T. Sakamoto, and T. Yoneda, "A Thin LED Backlight System with High Efficiency for Backlighting 22-in TFT-LCDs," SID Symposium Digest of Technical Papers, vol. 35, pp. 1218-1221, 2004.
[4] R. S. West, H. Konijn, S. Kuppens, N. Pfeffer, Q. V. Vader, Y. Martynov, T. Heemstra, J. Sanders, T. Yagi, and G. Harbers, "LED backlight for large area LCD TV's," 10th International Display Workshops (IDW), 2003.
[5] K. R. Hardy, M. S. Olsson, J. R. Sanderson, K. A. Steeves, B. P. Lakin, J. E. Simmons, and P. A. Weber, "High Brightness Light Emitting Diodes for Ocean Applications," OCEANS, pp. 1-4, 2007.
[6] K. R. Hardy, M. S. Olsson, B. P. Lakin, K. A. Steeves, J. R. Sanderson, J. E. Simmons, and P. A. Weber, "Advances in High Brightness Light Emitting Diodes in underwater applications," OCEANS, pp. 1-5, 2008.
[7] J. F. V. Derlofske, "Computer modeling of LED light pipe systems for uniform display illumination," International Symposium on Optical Science and Technology, pp. 119-129, 2001.
[8] A. Tagaya, S. Ishii, K. Yokoyama, E. Higuchi, and Y. Koike, "The advanced highly scattering optical transmission polymer backlight for liquid crystal displays," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 2241-2248, Apr 2002.
[9] F. Zhao and J. V. Derlofske, "Side-Emitting Illuminators Using LED Sources," International Society for Optics and Photonics, pp. 33-43, 2003.
[10] T. Fend, G. Jorgensen, and H. Kuster, "Applicability of highly reflective aluminium coil for solar concentrators," Solar Energy, vol. 68, pp. 361-370, 2000.
[11] C. F. Liu, C. T. Pan, K. H. Liu, Y. C. Chen, J. L. Chen, and J. C. Huang, "Optical Film for LED with Triangular-Pyramidal Array Using Size-Reducible Embossing Method," Journal of Materials Engineering and Performance, vol. 20, pp. 1544-1553, Dec 2011.
[12] J. K. Tseng, Y. J. Chen, C. T. Pan, T. T. Wu, and M. H. Chung, "Application of optical film with micro-lens array on a solar concentrator," Solar Energy, vol. 85, pp. 2167-2178, Sep 2011.
[13] J. Chen, H. D. Kim, and K. C. Kim, "Measurement of dissolved oxygen diffusion coefficient in a microchannel using UV-LED induced fluorescence method," Microfluidics and Nanofluidics, vol. 14, pp. 541-550, Mar 2013.
[14] "http://www.ledin.it/page.asp?pag=1339&focusid=2761," (2012/08/29).
[15] P. Liu, B. Yang, and K. Lu, "Design and research on the uniform illumination system of UV exposure machine," Optical Instruments, vol. 2, p. 007, 2012.
[16] I. Moreno and R. I. Tzonchev, "Effects on illumination uniformity due to dilution on arrays of LEDs," in Proc. of SPIE Vol, 2004, p. 269.
[17] I. Moreno, J. Munoz, and R. Ivanov, "Uniform illumination of distant targets using a spherical light-emitting diode array," Optical Engineering, vol. 46, Mar 2007.
[18] A. J. W. Whang, Y. Y. Chen, and Y. T. Teng, "Designing Uniform Illumination Systems by Surface-Tailored Lens and Configurations of LED Arrays," Journal of Display Technology, vol. 5, pp. 94-103, Jan-Mar 2009.
[19] H. Zhao, W. Xu, and Y. Lu, "An UV curing source system with LED array," Journal of Optoelectronics - Laser, vol. 18, pp. 1314-1316, 2007.
[20] Y. J. Lu, W. H. Xu, H. Zhao, Y. l. Qo, and M. Song, "Design a single spot UV-curing system with two-dimensional UV-LED array," Journal of Applied Optics, vol. 1, p. 006, 2009.
[21] "中國第一台UV LED新型平行光曝光機問世;http://www.radtechchina.com/ReadNews.asp?newsid=499," (2012/12/24).
[22] T. S. Natarajan, M. Thomas, K. Natarajan, H. C. Bajaj, and R. J. Tayade, "Study on UV-LED/TiO2 process for degradation of Rhodamine B dye," Chemical Engineering Journal, vol. 169, pp. 126-134, May 1 2011.
[23] T. S. Natarajan, K. Natarajan, H. C. Bajaj, and R. J. Tayade, "Energy Efficient UV-LED Source and TiO2 Nanotube Array-Based Reactor for Photocatalytic Application," Industrial & Engineering Chemistry Research, vol. 50, pp. 7753-7762, Jul 6 2011.
[24] C. T. Pan, Y. C. Chen, Y. J. Chen, W. C. Wang, H. C. Yang, and H. C. Wu, "Compound Optical Film Using Gray Scale Mask Embedded with Microvoids," Advances in Condensed Matter Physics, 2012.
[25] "http://www.nichia.co.jp/en/about_nichia/index.html," (2013/07/07).
[26] A. L. Timinger, J. A. Muschaweck, and H. Ries, "Designing tailored free-form surfaces for general illumination," in Optical Science and Technology, SPIE's 48th Annual Meeting, 2003, pp. 128-132.
[27] Y. Ding, P. F. Gu, and Z. R. Zheng, "The freeform reflector for uniform rectangular illumination," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 7771-7773, Dec 2007.
[28] Y. Ding and P. F. Gu, "Realization of uniform illumination through free-form reflector," Journal of Optics, vol. 27, 2007.
[29] Y. Ding, P. F. Gu, W. Lu, and Z. R. Zheng, "Construction of freeform reflector through numerical solutions to differential equations," Journal of Zhejiang University, vol. 41, 2007.
[30] Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, "Freeform LED lens for uniform illumination," Optics Express, vol. 16, pp. 12958-12966, Aug 18 2008.
[31] A. Domhardt, U. Rohlfing, K. Klinger, K. Manz, D. Kooß, and U. Lemmer, "Optical design of LED-based automotive tail lamps," in Optical Engineering+ Applications, 2007, pp. 66700L-66700L-10.
[32] A. Domhardt, U. Rohlfing, S. Weingaertner, K. Klinger, D. Kooß, K. Manz, and U. Lemmer, "New design tools for LED headlamps," in Photonics Europe, 2008, pp. 70032C-70032C-10.
[33] N. Shatz, J. Bortz, J. Matthews, and P. Kim, "Advanced optics for LED flashlights," in Proceedings of SPIE, the International Society for Optical Engineering, 2008, pp. 70590D. 1-70590D. 12.
[34] M. C. Simon, "Ray Tracing Formulas for Monoaxial Optical-Components," Applied Optics, vol. 22, pp. 354-360, 1983.
[35] M. C. Simon and R. M. Echarri, "Ray Tracing Formulas for Monoaxial Optical-Components - Vectorial Formulation," Applied Optics, vol. 25, pp. 1935-1939, Jun 15 1986.
[36] R. L. Cook, T. Porter, and L. Carpenter, "Distributed ray tracing," in ACM SIGGRAPH Computer Graphics, 1984, pp. 137-145.
[37] P. Haschberger, O. Mayer, V. Tank, and H. Dietl, "Ray Tracing through an Eccentrically Rotating Retroreflector Used for Path-Length Alteration in a New Michelson Interferometer," Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 8, pp. 1991-2000, Dec 1991.
[38] P. Shirley, C. Y. Wang, and K. Zimmerman, "Monte Carlo techniques for direct lighting calculations," Acm Transactions on Graphics, vol. 15, pp. 1-36, Jan 1996.
[39] S. C. Shen and H. J. Huang, "Design of LED fish lighting attractors using horizontal/vertical LIDC mapping method," Optics Express, vol. 20, pp. 26135-26146, Nov 19 2012.
[40] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O'Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, "High-power AlGaInN flip-chip light-emitting diodes," Applied Physics Letters, vol. 78, pp. 3379-3381, May 28 2001.
[41] K. Zhao, J. Zhang, and J. a. Duan, "Effects of bonding parameters on the lighting performance of high power LEDs fabricated by thermosonic flip chip bonding," in Electronic Packaging Technology, 2006. ICEPT'06. 7th International Conference on, 2006, pp. 1-5.
[42] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, "Analysis of high-power packages for phosphor-based white-light-emitting diodes," Applied Physics Letters, vol. 86, Jun 13 2005.
[43] N. T. Tran and F. G. Shi, "LED package design for high optical efficiency and low viewing angle," in Microsystems, Packaging, Assembly and Circuits Technology, 2007. IMPACT 2007. International, 2007, pp. 10-13.
[44] Y. Gu and N. Narendran, "Design and Evaluation of an LED-based Light Fixture," in Optical Science and Technology, SPIE's 48th Annual Meeting, 2004, pp. 318-329.
[45] J. Chen, Q. Zhu, Q. Chen, Q. Luo, X. Zhu, and B. Yu, "Reflector Design of Light Emitting Diode for Uniform Illuminance," in Photonics and Optoelectronics (SOPO), 2012 Symposium on, 2012, pp. 1-4.
[46] C. Canavesi, W. J. Cassarly, and J. P. Rolland, "Direct calculation algorithm for two-dimensional reflector design," Optics Letters, vol. 37, pp. 3852-3854, Sep 15 2012.
[47] L. W. Sun, S. Z. Jin, and S. Y. Cen, "Free-form microlens for illumination applications," Applied Optics, vol. 48, pp. 5520-5527, Oct 10 2009.
[48] Z. G. Xie, J. G. Wu, C. Li, and B. H. Yu, "Optical Lens Design 0f LED Side View Angle Based 0n Two Free Surface."
[49] G. Hass, "Filmed Surfaces for Reflecting Optics," Journal of the Optical Society of America, vol. 45, pp. 945-952, 1955.
[50] M. Brogren, B. Karlsson, A. Roos, and A. Werner, "Analysis of the effects of outdoor and accelerated ageing on the optical properties of reflector materials for solar energy applications," Solar Energy Materials and Solar Cells, vol. 82, pp. 491-515, May 30 2004.
[51] M. H. Yang, A. Gatto, and N. Kaiser, "Optical thin films with high reflectance, low thickness and low stress for the spectral range from vacuum UV to near IR," Journal of Optics a-Pure and Applied Optics, vol. 8, pp. 327-332, Mar 2006.
[52] A. C. Lund and C. A. Schuh, "Topological and chemical arrangement of binary alloys during severe deformation," Journal of Applied Physics, vol. 95, pp. 4815-4822, May 1 2004.
[53] S. Mozgovoy, J. Heinrich, U. E. Klotz, and R. Busch, "Investigation of mechanical, corrosion and optical properties of an 18 carat Au-Cu-Si-Ag-Pd bulk metallic glass," Intermetallics, vol. 18, pp. 2289-2291, Dec 2010.
[54] M. Telford, "The case for bulk metallic glass," Materials today, vol. 7, pp. 36-43, 2004.
[55] Y. Liu, S. Hata, K. Wada, and A. Shimokohbe, "Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass," Japanese Journal of Applied Physics, vol. 40, p. 5382, 2001.
[56] L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, "Investigation on super-resolution near-field blu-ray-type phase-change optical disk with Sb2Te3 mask layer," Japanese Journal of Applied Physics, vol. 44, p. 3615, 2005.
[57] U. Mizutani and K. Yoshino, "Formation and Low-Temperature Electronic-Properties of Liquid-Quenched Ag-Cu-Mg, Ag-Cu-Si, Ag-Cu-Sn and Ag-Cu-Sb Metallic Glasses," Journal of Physics F-Metal Physics, vol. 14, pp. 1179-1192, 1984.
[58] A. Inoue, K. Nakano, Y. Bizen, T. Masumoto, and H. S. Chen, "New Icosahedral and Amorphous Phases in Mg-Al-Ag System Prepared by Liquid Quenching," Japanese Journal of Applied Physics Part 2-Letters, vol. 27, pp. L944-L947, Jun 1988.
[59] T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, "Correlation between reflectivity and resistivity in multi-component metallic systems," Applied Physics Letters, vol. 101, Jul 2 2012.
[60] A. E. F. Taylor, "illumination fundamentals," Optical Research Associates, 2000.
[61] V. N. Mahajan, "Optical Imaging and Aberrations, Part I - Ray Geometrical Optics," SPIE, 1998.
[62] W. B. Robert, "Radiometry and the detection of optical radiation," Wiley-Interscience, 1983.
[63] 李碩重, "照明設計學," 全華科技圖書股份有限公司, 1993.
[64] C. Horn, W. Little, and E. Salter, "Relation of Distance to Candle-Power Distribution from Fluorescent Luminaires," Illuminating Engineering, vol. 47, p. 99, 1952.
[65] W. Klement, R. H. Willens, and P. O. L. Duwez, "Non-crystalline structure in solidified gold–silicon alloys," 1960.
[66] D. Turnbull, "Under what conditions can a glass be formed?," Contemporary Physics, vol. 10, pp. 473-488, 1969.
[67] N. Metropolis and S. Ulam, "The monte carlo method," Journal of the American statistical association, vol. 44, pp. 335-341, 1949.
[68] " IT7.215–1992, http://www.ansi.org," American National Standards Institute (ANSI), (2013/0707).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.196.27.171
論文開放下載的時間是 校外不公開

Your IP address is 54.196.27.171
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code