Responsive image
博碩士論文 etd-0716116-115628 詳細資訊
Title page for etd-0716116-115628
論文名稱
Title
無ITO矽電極2π兆赫波液晶相位調製器的研究
ITO free Silicon Based THz Liquid Crystal Phase Shifter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-08
繳交日期
Date of Submission
2016-08-24
關鍵字
Keywords
向列型液晶、兆赫波、相位調製器
Nematic liquid crystal, THz, Phase shifter
統計
Statistics
本論文已被瀏覽 5692 次,被下載 0
The thesis/dissertation has been browsed 5692 times, has been downloaded 0 times.
中文摘要
近十幾年來兆赫波科技有著重大的成長,兆赫波在通訊、光譜分析等領域的應用,使得兆赫波光電子學的發展越來越進步。雖然液晶在兆赫波段的應用仍然還在發展中,不過已經有許多團隊利用液晶的雙折射特性與簡單容易的調控方式,在兆赫波段製作出兆赫波段液晶相位調製器,由於銦錫氧化物(ITO)薄膜在兆赫波段的低度透明,所以在電極的選擇相當重要。本論文中,我們首次提出使用矽基板當作電極的兆赫波液晶相位調製器,並利用向列型液晶E7與PI水平配向膜,製作出相位超過2π的相位調製器,與過去文獻相比,每單位伏特所能調控的相位量為72度為最高。我們也發現在低電壓時有蕭特基接觸的現象產生,利用矽基板表面鍍鉻形成歐姆接觸,並使在低電壓與相位移動量呈線性關係。
Abstract
Terahertz (THz) photonics have been attracted much attention due to its remarkable progress. To date, many phase shifters based on liquid crystals (LCs) in THz region have been reported. Typically, most devices were fabricated using silica substrate coated with ITO as electrode for driving LC molecules. However, the nature of absorption limits its application since ITO material is opaque in the terahertz frequency range. In this thesis, using Si as substrate of LC cell, the electric controlled 2π THz phase shifter was demonstrated. The phase shifter was constructed using nematic LC (E7) that is with thickness of 2.2 mm and sandwiched by two Si substrate. In that case, a maximum of temporal retardation around 1ps can be achieved, revealing that the signal has a phase shift of around 2π at 1THz. The clear voltage-dependence of phase shift of THz radiation indicates that the phase shift can be controlled by altering the applied voltage. This is the first time to our best knowledge that Si can be used to fabricate THz phase shifter without transparent conductive film as electrode. In addition, using thermal evaporating Cr layer to improving contact from Schottky behavior to Ohmic one, phase shift as high as 400 degree was obtained. One should be noted that the phase shifting performance can be accordingly estimated around 72 degree per Volt. This is also the highest phase shifting performance and exhibit the potential of Si substrate for THz photonics.
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
致謝 iii
摘要 v
Abstract vi
目錄 vii
圖次 ix
表次 xiii
第一章 緒論 1
1.1 前言 1
1.2 論文動機 2
1.3 論文結構 3
第二章 兆赫波時域解析系統理論與液晶介紹 4
2.1 兆赫波在各領域的發展簡介 5
2.2 兆赫波時域解析光譜系統 6
2.2.1 兆赫波產生機制 6
2.2.2 自由空間電光晶體取樣法 8
2.2.3 兆赫波時域解析光譜系統 13
2.3 液晶介紹 16
2.3.1 液晶的分類 16
2.3.2 液晶的物理特性 19
第三章 矽基板作為電極的兆赫波段相位調變器 24
3.1 兆赫波相位調製器 25
3.1.1 磁控兆赫波相位調製器 25
3.1.2 電控兆赫波相位調製器 26
3.2 矽的介紹 30
3.2.1 矽在兆赫波的應用 30
3.2.2 矽在液晶的應用 30
3.3 矽電極兆赫波相位調製器 33
3.4 配向膜對相位調變量的影響 40
3.5 結論 45
第四章 歐姆接觸矽電極兆赫波液晶相位調製器 46
4.1 歐姆接觸與蕭特基接觸的介紹與原理 47
4.2 比較矽基板鍍鉻前後的I-V 曲線 50
4.3 歐姆接觸的矽電極兆赫波相位調製器 52
4.4 結論 55
第五章 總結與未來展望 56
5.1 總結 56
5.2 未來展望 57
參考文獻 59
參考文獻 References
[1] B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Materials, 1, 26-33 (2002).
[2] C. F. Hsieh and R. P. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Optics Letters, 31, 1112-1114 (2006).
[3] C. W. Chen, T.T. Tang, S. H. Lin, J. Y. Huang, C. S. Chang, P. K. Chung, S. T. Yen and C. L. Pan, “Optical properties and potential applications of ɛ-GaSe at terahertz frequencies,” J. Opt. Soc. Am. B, 26, A58-A65 (2009).
[4] X. W. Lin, J. B. Wu, W. Hu, Z. G Zheng, Z. J. Wu, G. Zhu, F. Xu, B. B. Jin and Y. Q. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Advance, 1, 032133 (2011).
[5] C. S. Yang, T. T. Tang, R. P. Pan, P. Yu and C. L. Pan, “Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment,” Applied Physics Letters, 104, 141106 (2014).
[6] Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan and E. P. MacPherson, “Robust Thin-Film Wire-Grid THz Polarizer Fabricated Via a Low-Cost Approach,” IEEE Photon. Technol. Lett., 25, 81-84 (2013).
[7] E. S. Lee and T. I. Jeon, “Tunable THz notch filter with a single groove inside parallel-plate waveguides,” Opt. Express, 20, 29605-29612 (2012).
[8] N. Vieweg, N. Born, I. Al-Naib and M. Koch, ”Electrically tunable terahertz notch filters,” J. Infrared Milli. Terahz Waves, 33, 327-332 (2012).
[9] C. W. Chen, Y. C. Lin, C. H. Chang, P. Yu, J. M. Shieh and C. L. Pan, “Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium Tin Oxide Thin Films from the Visible to the Far-Infrared,” IEEE Journal of Quantum Electronics, 46, 1746-1754 (2010).
[10] C. S. Yang, C. H. Chang, M. H. Lin, P. Yu, O. Wada and C. L. Pan, “THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure,” Optics Express, 20, A441-A451 (2012).
[11] D. Vettese, “Microdisplays: Liquid crystal on silicon,” Nature Photonics, 4, 752-754 (2010).
[12] Z. Zhang, Z. You and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Science & Applications, 3, e213 (2014).
[13] J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” Journal of the Optical Society of America B, 21, 1379-1386 (2004).
[14] 方柏勝, “膽固醇型液晶在兆赫波光電子學的應用,” 國立中山大學光電工程學系 (2014).
[15] D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog Quantum Electron, 28, 1-66 (2004).
[16] D. M. Mittleman, R. H. Jacobson and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quatum Eletron,. 2, 689-692 (1996).
[17] T. G. Phillips and J. Keene, “Submillimeter astronomy,” Proc. IEEE, 80, 1662 (1992).
[18] T. Kürner, “Towards Future THz Communications Systems,” Terahertz Science and Technology, 5, 11-17 (2012).
[19] C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch and T. Kleine-Ostmann, “300 GHz Transmission System,”IET Electronics Letters, 44, 213-214 (2008).
[20] A. Menikh, R. MacColl, C. A. Mannella and X. C. Zhang, “Terahertz Biosensing Technology Frontiers and Progress,” Chem. Phys. Chem., 3, 655-658 (2002).
[21] M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE, 95, 1658-1665 (2007).
[22] G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. Neil and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature, 420,153-156 (2002).
[23] G. Mourou, C. V. Stancampiano, A. Antonetti and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser‐driven semiconductor switch,” Applied Physics Letters, 39, 295-296 (1981).
[24] P. U. Jepsen, R. H. Jacobsen and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductorantennas,” J. Opt. Soc. Am. B., 13, 2424-2436 (1996).
[25] http://www.batop.de/products/terahertz/photoconductive-antenna/data-sheet/manual_PCA-44-06-10-800.pdf
[26] http://www.batop.de/products/terahertz/photoconductive-antenna/data-sheet/mounts/mounted_PCA1-h.pdf
[27] P. Smith, D. Auston and M. Nuss, “Sub-picosecond photoconducting dipole antennas”, IEEE J. Quantum Electron, 24, 255-260 (1988).
[28] Z. G. Lu, P. Campbell and X. C. Zhang, “Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser,” Applied Physics Letters, 71, 593-595 (1997).
[29] P. C. M. Planken, H. K. Nienhuys, H. J. Bakker and T. Wenckebach, “Measurement and caculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B.,18 , 313-317 (2001).
[30] D. H. Auston, K. P. Cheung, J. A. Valdmanis and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett., 53, 1555-1558 (1984).
[31] Ch. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Applied Physics Letters, 53, 1480-1482 (1988).
[32] http://www.spectra-physics.com/products/ultrafast-lasers/mai-tai
[33] F. Reinitzer, “Beiträge zur kenntnis des cholesterins,” Monatshefte für Chemie, 9, 421–441 (1888).
[34] O. Lehmann, “Über fliessende Krystalle,” Z. Phys. Chem., 4,462-472 (1889).
[35] P. J. Collings and M. Gird, “Introduction to Liquid Crystals Chemistry and Physics,” Taylor & Francis Ltd (1997).
[36] 林宗賢,“液晶光子晶體雷射現象與其光控制研究”, 國立成功大學物理研究所 (2004).
[37] L. P. G. de Gennes and J. Prost, “The physics of liquid crystal,” 2nd ed., Clarendon Press, Oxford (1993).
[38] C. S. Yang, C. J. Lin, R. P. Pan, C. T. Que, K. Yamamoto, M. Tani and C. L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B., 27, 1866-1873 (2010).
[39] R. P. Pan, C. F. Hsieh, C. L. Pan and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys., 103, 093523 (2008).
[40] N. Vieweg, M. K. Shakfa and M. Koch, “BL037 A nematic mixture with high terahertz birefringence,” Opt. Commun., 284, 1887-1889 (2011).
[41] C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan and C. L. Pan, ”Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express, 12, 2625-2630 (2004).
[42] H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technology Letters, 18, 1488-1490 (2006).
[43] C. S. Yang, T. T. Tang, P. H. Chen, R. P. Pan, P. Yu and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter with indium-tin-oxide nanowhiskers as transparent electrodes,” Optics Letters, 39, 2511-2513 (2014).
[44] K. Altmann, M. Reuter, K. Grabat, M. Koch, R. Dabrowski and I. Dierking, “Polymer stabilized liquid crystal phase shifter for terahertz waves,” Optics Express, 21, 12395-12400 (2013).
[45] C. S. Yang, C. Kuo, C. C. Tang, J. C. Chen, R. P. Pan and C. L. Pan, “Liquid-Crystal Terahertz Quarter-Wave Plate Using Chemical-Vapor-Deposited Graphene Electrodes,” IEEE Photonics Journal, 7, (2015).
[46] I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch and P. Dawson,“An optically controllable terahertz filter,” Appl. Phys. Lett., 76, 2821-2823 (2000).
[47] R. Kersting, G. Strasser and K. Unterrainer,“Terahertz phase modulator,” Electron. Lett., 36, 1156-1158 (2000).
[48] A. M. Sinyukov, Z. Liu, Y. L. Hor, K. Su, R. B. Barat, D. E. Gary, Z. H. Michalopoulou, I. Zorych, J. F. Federici and D. Zimdars, “Rapid-phase modulation of terahertz radiation for high-speed terahertz imaging and spectroscopy,” Optics Letters, 33, 1593-1595 (2008).
[49] D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Optics Express, 19, 9968-9975 (2011).
[50] K. C. Lim, J. D. Margerum and A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett., 62, 1065–1067 (1993).
[51] T. R. Tsai, C. Y. Chen, R. P. Pan, C. L. Pan and X. C. Zhang, “Electrically Controlled Room Temperature Terahertz Phase Shifter With Liquid Crystal,” IEEE Micorwave and Wireless Components Letters, 14, 77-79 (2004).
[52] 林柏亨, “偏極獨立兆赫波相位調變器的研製,” 國立中山大學光電工程學系 (2012).
[53] M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Applied Physics Letters, 56, 1694-1696 (1990).
[54] D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” Journal of the Optical Society of America B, 7, 2006-2015 (1990).
[55] T. I. Jeon and D. Grischkowsky, “Nature of Conduction in Doped Silicon,” Phys. Rev. Lett., 78, 1106-1109 (1990).
[56] T. I. Jeon and D. Grischkowsky, “Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy,” Applied Physics Letters, 72, 3032-3034 (1998).
[57] T. Chen, P. Liu, J. Liu and Z. Hong, “A terahertz photonic crystal cavity with high Q-factors,” Appl. Phys. B, 115, 105-109 (2013).
[58] T. Chen, Z. Han, J. Liu and Z. Hong, “Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors,” Applied Optics, 53, 3454-3458 (2014).
[59] https://www.itri.org.tw/chi/index.aspx
[60] F. Braun, "Uber die Stromleitung durch Schwefelmetalic", Annalen der Physik and Chemie, 153, 556-563 (1874).
[61] Donald A, Neamen. “Semiconductor Physics & Devices,”
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.27.148
論文開放下載的時間是 校外不公開

Your IP address is 3.144.27.148
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code