Responsive image
博碩士論文 etd-0716117-120112 詳細資訊
Title page for etd-0716117-120112
論文名稱
Title
縮小化且低成本之巴特勒矩陣設計及其於天線波束成形之應用
Design of a Miniaturized, Low Cost Butler Matrix and its Application in Antenna Beamforming
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-26
繳交日期
Date of Submission
2017-08-16
關鍵字
Keywords
低成本、相控陣列天線、巴特勒矩陣、枝幹耦合器、縮小化、波束成形
Butler matrix, Branch-line coupler, Miniaturization, Phased array antenna, Beam-forming network(BFN), Low-cost
統計
Statistics
本論文已被瀏覽 5703 次,被下載 31
The thesis/dissertation has been browsed 5703 times, has been downloaded 31 times.
中文摘要
隨著無線設備的興起而使用者大增,在有限的可用頻帶下,面臨訊號間相互干擾的問題,常見的2.4 GHz頻段已非常擁擠,因此各國家在第五代移動通信系統(5G)提出新的免執照頻段於5 GHz(5.15 GHz~5.85 GHz)。本論文即設計於此頻段,並利用可切換陣列天線之波束方向提高天線指向性,不僅可降低訊號干擾和減少功耗,還因操作於高頻而提高傳輸速率。
巴特勒矩陣的切換3D波束成形設計包含三個部分,產生相位差之饋入網路、形成輻射場型的陣列天線、及控制相位差之開關。饋入網路是採用架構簡單之巴特勒矩陣,以接地共面波導之方式製作於單層板之兩側而取消交叉跨線,使原本龐大面積大幅縮小;再加上彎曲枝幹耦合器不僅增加兩層間之隔離度,還可將原本1/4波長之長度再縮減,使整體面積再縮小。與整合式被動元件(IPD)基板或晶片相比,本論文以有機基板之製作並減小巴特勒矩陣面積,達到降低成本的目的。
本論文題出之巴特勒矩陣大小僅有29 mm×56.5 mm(0.94 λg×1.88 λg),比傳統巴特勒矩陣縮小40 %。將縮小化之巴特勒矩陣,搭配控制開關並整合三角形平面饋入之天線,達到高頻寬、高指向性、高增益之切換陣列天線應用,使波束成形於3D各方向。
Abstract
With rapid growth in the usage of wireless devices, there is severe interference between the signals in the limited frequency space. Moreover, it is crowded in the ISM 2.4 GHz band. Therefore, an unlicensed spectrum at 5 GHz, from 5.15 GHz to 5.85 GHz, is proposed by multiple countries for 5G wireless systems use, and this paper focuses on this band. By using the beam direction of the switchable array antenna, which improves the antenna directivity, can not only reduce the signal interference and power consumption, but also increase the overall transmission coverage.
In this paper, there are three parts in switchable array antenna design: a phase difference feed network, an array antenna that forms a radiation field, and a switch that controls the phase difference. The feed network uses a simple structure of the Butler matrix which made by a coplanar waveguide with ground on both sides of the single-layer board instead of the crossover; thus the area can be significantly reduced. Furthermore, by bending the branch coupler can not only increase the isolation between the two layers, but also reduce the area made in length of 1/4 wavelength. Compared to the Integrated Passive Device (IPD) technology, using the organic substrate and minimizing Butler matrix is the quickest way to validate design concept.
The size of the Butler matrix is 29 mm × 56.5 mm, 0.94 λg × 1.88 λg, which is 40% lower than the traditional design. By using the miniaturized Butler matrix with the switch and the triangular antenna feeding can achieve an array antenna design with broad bandwidth, high directivity, and high gain.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖表目錄 vii
第一章 緒論 1
1.1研究動機 1
1.2論文架構 6
第二章 巴特勒矩陣網路理論及基本特性 7
2.1散射參數 7
2.2雙埠網路奇偶模分析 8
2.2.1偶模態 9
2.2.2奇模態 9
2.2.3散射參數分析 10
2.3傳輸(ABCD)矩陣 10
2.4枝幹耦合器 12
2.4.1偶模態分析 13
2.4.2奇模態分析 14
2.4.3散射參數分析 15
2.5接地共面波導 16
2.6巴特勒矩陣網路架構與介紹 18
2.7相控陣列天線(phased array antenna) 20
第三章 巴特勒設計與模擬 23
3.1枝幹耦合器 23
3.2交叉線路與45度相移器 26
3.3巴特勒矩陣 28
3.4可切換巴特勒矩陣 30
3.5章節討論 34
第四章 陣列天線原理與模擬 35
4.1平面天線原理 35
4.2三角形平面饋入之平面天線 37
4.3 陣列天線與波束成形 40
4.4巴特勒矩陣的切換3D波束成形 45
4.5章節討論 47
第五章 巴特勒矩陣的切換3D波束成形系統實作與量測 48
5.1可切換巴特勒矩陣之實作與量測 48
5.2陣列天線之實作與量測 50
5.3巴特勒矩陣的切換3D波束成形系統 53
5.4章節討論 56
第六章 結論與未來展望 57
6.1結論 57
6.2未來展望 57
參考文獻 59
參考文獻 References
[ 1]G. Sateesh Kumar, G. Sasi Bhushana Rao, and M. N. V. S. S. Kumar, “GPS Signal Short-Term Propagation Characteristics Modeling in Urban Areas for Precise Navigation Applications,” Scientific Research Journal, Vol.4, No.2, pp.192-199, May 2013.
[ 2]國家通訊傳波委員會(2008),中華民國頻率分配圖。
[ 3]Qualcomm, Ride the wave: surfing the U.S. radio spectrum on the way to 5G, NOV 11, 2016,https://www.qualcomm.com/news/onq/2016/11/10/ride-wave-surfing-us-radio-spectrum-way-5g
[ 4]財團法人電信技術中心,LTE-U與LAA發展趨勢介紹,2015/10/22。
[ 5]Md. Rajibur Rahaman Khan, Vyacheslav Tuzlukov, “Null-steering Beamforming for Cancellation of Co-channel Interference in CDMA Wireless Communication System,” IEEE International Conference on Signal Processing and Communication Systems, ICSPCS, Gold Coast, QLD, Australia, Feb. 2011.
[ 6]利用5G WiFi波束成形和LDPC性能技術提高無線連接(http://www.mwrf.net/tech/communications/2015/17826.html)
[ 7]Chia-Chan Chang, Ting-Yueh Chin, Jen-Chieh Wu, and Sheng-Fuh Chang, “Novel Design of a 2.5-GHz Fully Integrated CMOS Butler Matrix for Smart-Antenna Systems,” IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 8, pp. 1757-1763, Aug. 2008.
[ 8]Erio Gandini, Mauro Ettorre, Ronan Sauleau, and Anthony Grbic, “A Lumped-Element Unit Cell for Beam-Forming Networks and It’s Application to a Miniaturized Butler Matrix”, IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1477-1487, Apr. 2013.
[ 9]Chih-Jung Chen, and Tah-Hsiung Chu, “Design of a 60-GHz Substrate Integrated Waveguide Butler Matrix—A Systematic Approach,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 7, pp. 1724-1733, Jul. 2010.
[ 10] Ahmed Ali Mohamed Ali, Nelson J. G. Fonseca, Fabio Coccetti, and Hervé Aubert, “Design and Implementation of Two-Layer Compact Wideband Butler Matrices in SIW Technology for Ku-Band Applications,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 2, pp. 503-512, Feb. 2011.
[ 11]Mourad Nedil, Tayeb A. Denidni, and Larbi Talbi, “Novel Butler Matrix Using CPW Multilayer Technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 499-507, Jan. 2006.
[ 12]Ting-Yueh Chin, Sheng-Fuh Chang, Chia-Chan Chang, and Jen-Chieh Wu, “A 24 GHz CMOS Butler Matrix MMIC for Multi-Beam Smart Antenna Systems," IEEE Radio Frequency Integrated Circuits Symposium, pp. 633-636, Jun. 2008.
[ 13] Yo-Shen Lin, and Jun-Hua Lee, “Miniature Butler Matrix Design Using Glass-Based Thin-Film Integrated Passive Device Technology for 2.5-GHz Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2594–2602, Jul. 2013.
[ 14] William F. Moulder, Waleed Khalil, and John L. Volakis, “60-GHz Two-Dimensionally Scanning Array Employing Wideband Planar Switched Beam Network,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 818-821, 2010.
[ 15]Wei-Yang Chen, Ya-Ru Hsieh, Chi-Cheng Tsai, Yi-Ming Chen, Chia-Chan Chang, Sheng-Fuh Chang, “A Compact Two-Dimensional Phased Array Using Grounded Coplanar-Waveguides Butler Matrices,” European Radar Conference, pp. 421-424, Oct 2012.
[ 16]Chia-Hao Chen, Wei-Ting Fang, and Yo-Shen Lin, “Miniature 2.4-GHz Switched Beamformer Module in IPD and Its Application to Very-Low-Profile 1D and 2D Scanning Antenna Arrays,” IEEE ECTC, 2017.
[ 17]David M. Pozar, ”Microwave Engineering(4th ed.),” Wiley, New York,2012
[ 18]Rainee N. Simons, “Coplanar Waveguide Circuits, Components, and Systems,” Wiley, New York, 2001.
[ 19]Taybe. A. Denidni, and Taro Eric Libar, ”Wide Band Four-Port Butler Matrix for Switched Multibeam Antenna Arrays.” IEEE International Symposium on Personal, indoor and Mobile Radio Communication Proceedings, vol. 3, pp. 2461-2464, 7-10 Sep 2003.
[ 20]翁金輅,天線基本講義。
[ 21]C. A. Balanis, “Antenna Theory: Analysis and Design(3rd ed.),” Wiley, New York, 2013.
[ 22]D. G. Fang, “Antenna Theory and Microstrip Antennas,” CRC Press, Inc. Boca Raton, FL, USA,2009.
[ 23]Toyota Motor Engineering & Manufacturing North America, Inc., Butler matrix for 3D integrated RF front-ends. U.S. Patent 8013784 B2, Sep 9,2011
[ 24]Weng Yew Chang, Richard, Kye Yak See, and Eng Kee Chua, "Comprehensive Analysis of the Impact of Via Design on High-Speed Signal Integrity", IEEE Electronics Packaging Technology Conference, Vol. 9, Issue, 10-12, pp.262-266, Dec. 2007
[ 25]Analog Devices, “HMC7992 of datasheet,” 2016.
[ 26]David R. Jackson and Nicolaos G. Alexopoulos, "Simple Approximate Formulas for Input Resistance, Bandwidth, and Efficiency of a Resonant Rectangular Patch," IEEE Transactions on Antennas and Propagation, vol. 39, pp. 407-410, Mar. 1991.
[ 27]P. Bhartia, K. V. S. Rao, and R. S. Yomar, “Millimeter-wave Microstrip and Printed Circuit Antennas,” p. 104. Norwood, MA: Artech House, 1991.
[ 28]Chung-Yi Hsu, Lih-Tyng Hwang, Fa-Shian Chang, Shun-Min Wang, Chih-Feng Liu, and Jhu-Wei Ji, “A Broadband Probe-Fed 4×4 Array Antenna,”, IEEE Asia-Pacific Conference on Antennas and Propagation , APCAP, Kaohsiung, Taiwan, Jul. 2016.
[ 29] Ahmed Ali Mohamed Ali, Nelson J. G. Fonseca, Fabio Coccetti, and Hervé Aubert, “Design and Implementation of Two-Layer Compact Wideband Butler Matrices in SIW Technology for Ku-Band Applications”, IEEE Transactions on Antennas and Propagation, vol. 59, no. 2, pp.503 -512, Feb. 2011.
[ 30]Slawomir Koziel, and Piotr Kurgan, ” Low-Cost Optimization of Compact Branch-Line Couplers and Its Application to Miniaturized Butler Matrix Design,” European Microwave Conference, Oct. 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code