Responsive image
博碩士論文 etd-0716117-154440 詳細資訊
Title page for etd-0716117-154440
論文名稱
Title
SOI金氧半場效電晶體於熱載子劣化之電性分析與物理機制研究
Electrical Analysis and Physical Mechanism of Hot Carrier Degradation in SOI MOSFETs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-24
繳交日期
Date of Submission
2017-08-17
關鍵字
Keywords
熱載子應力劣化、電洞注入、絕緣層上矽、金氧半場效電晶體、阻隔金屬矽化層
RPO, SOI, MOSFETs, hole injection, hot carrier degradation
統計
Statistics
本論文已被瀏覽 5733 次,被下載 286
The thesis/dissertation has been browsed 5733 times, has been downloaded 286 times.
中文摘要
金氧半場效電晶體(Metal-Oxide-Semiconductor Field Effect Transistors, MOSFETs)為積體電路中最重要之電路元件,其具備低製造成本、低功率消耗、易微縮以及在積體電路間有良好之兼容性等優勢。於莫爾定律(Moore’s Law)之微縮效應下,漏電、短通道效應導致閘極控制力下降及功率消耗提高之問題更為顯著。而絕緣層上矽(Silicon On Insulator, SOI)電晶體為追求更高速與省電趨勢下之產物,其性能與可靠度為必須權衡之議題。因此本研究將針對絕緣層上矽金氧半場效電晶體探討其電性分析以及可靠度議題。
第一部分將比較低摻雜汲極區(Lightly Doped Drain, LDD)有無進行鍺之預先非晶化處理之PD-SOI MOSFET,其基本電性及熱載子應力(hot carrier stress, HCS)下之可靠度。此外,本實驗於熱載子應力操作結束之恢復(recover)測試時,臨界電壓(Threshold voltage, VT)以及次臨界擺幅(Subthreshold Swing, S.S.)顯示進一步劣化之異常趨勢。本研究將會藉由改變不同之電性量測手法及量測順序釐清,注入於氧化層之電洞屏蔽部分介面缺陷之影響。並於不同閘極偏壓下之熱載子電應力實驗證實,電洞注入之多寡與閘極及汲極間之偏壓密切相關。
第二部分使用之元件為絕緣層上矽橫向擴散(Lateral diffusion, LD) MOSFETs。相較於一般元件之熱載子應力劣化,劣化程度除了受到汲極工程(drain engineering)之影響,阻障氧化層(Resist Protected Oxide, RPO)之緻密程度竟也與熱載子應力劣化程度互相影響。本研究將藉由半導體模擬軟體ISE-TCAD之電性模擬釐清碰撞游離最嚴重之區域。模擬結果也證實,低N型摻雜之耐壓區(N- drift region)與N+汲極之介面處,電場方向為汲極指向阻障氧化層。因此熱載子應力操作下之元件,阻障氧化層將有明顯載子注入之行為,進而影響元件之電性與可靠度。
Abstract
Metal-oxide-semiconductor field effect transistor (MOSFET) is the most important device for advanced integrated circuits. The main advantages of a MOSFET are lower fabrication costs per integrated circuits, lower power consumption, easy to scale down and the good compatibility on the ICs. The dimension of MOSFETs had been shrinking continuously by following Moore’s Law, which also leads to excessive leakage current and reliability issues. Silicon-on-insulator (SOI) manufacturing process technology has been developed due to its advantages of low parasitic junction capacitance, low power consumption, and high switching speed. Therefore, we will focus on SOI n-MOSFETs to investigate electrical characteristics and hot carrier reliability issues in this study.
In the first part, we will investigate the electrical analysis and reliability of PD-SOI MOSFET in Lightly Doped Drain(LDD) whether implant the amorphization. Besides, we investigate an abnormal recovery phenomenon induced by hole injection during hot carrier stress. The method by which the hole injection induces the anomalous degradation during recovery can be clarified by different hot carrier stress (HCS) measurement sequences. Owing to this experiment results, the channel surface energy band is drawn down. It’s due to the partial interface defect which caused by the trapped hole will be temporarily shielded during HCS. Furthermore, results of different gate voltage stress experiments indicate that the amount of hole injection is determined by the electric field between the gate and drain.
In the second Lateral Diffused n type MOSFET section, investigates the origin of an abnormal enhancement in on-state current under hot carrier stress (HCS) in n-channel LD SOI-MOSFETs. In general, it is supposed that threshold voltage and subthreshold swing degrade with decreasing current after HCS, the degree to which is dependent on factors in drain engineering. However, this study we will confirm the effect of the density of the resist protect oxide (RPO), which is the blocking layer used for non-salicided area definition, and how it impacts hot carrier degradation. ISE-TCAD simulation results indicate that, at the location of maximum impact-ionization, the direction of the electric field is toward the resist protective oxide (RPO), resulting in hole injection into the RPO during HCS.
目次 Table of Contents
目錄
致謝 iii
中文摘要 iv
Abstract vi
目錄 viii
圖目錄 x
表目錄 xiv
第一章 概論 1
1-1前言 1
1-2研究動機 2
第二章 文獻回顧 7
2-1 絕緣層上矽(Silicon On Insulator , SOI)電晶體 7
2-1-1浮體效應(Floating Body Effect , Kink Effect) 8
2-1-2 自熱效應(Self-Heating Effect , SHE) 9
2-2 熱載子效應(Hot Carrier Effect , HCE) 10
2-3 Kirk Effect 11
2-4 短通道效應(Short Channel Effect , SCE) 12
2-4-1臨界電壓下滑(Threshold voltage roll-off) 12
2-4-2 本體碰穿效應(Bulk Punch-Through) 13
2-4-3閘極引發能障下降(Drain Induced Barrier Lowering , DIBL) 13
第三章 參數萃取與量測技術 24
3-1 量測技術 24
3-1-1 電荷充放電技術(Charge pumping) 24
3-1-2 電荷充放電技術的方法與原理 24
3-2 元件參數萃取 26
3-2-1載子遷移率(Carrier Mobility) 27
3-2-2 臨界電壓(Threshold Voltage) 27
3-2-3 次臨界擺幅(Subthreshold Swing) 28
3-3 量測儀器 29
第四章 LDD有無做非晶化處理之於PD-SOI上之熱載子劣化行為比較 33
4.1 簡介 33
4.2實驗架構 34
4.3實驗結果與討論 35
4.3.1基本電性與可靠度之探究 35
4.3.2 HCS後電洞注入之屏蔽效應 36
第五章 PD-SOI LD n-MOSFETs不同RPO緻密程度之元件之熱載子劣化行為比較 51
5.1 簡介 51
5.2實驗架構 52
5.3實驗結果與討論 53
5.3.1 不同緻密程度RPO之SOI n-MOSFETs基本電性比較 53
5.3.2不同緻密程度RPO之SOI n-MOSFETs熱載子效應 57
結論 83
參考文獻 85
參考文獻 References
[1] Schaller, Robert R. "Moore's law: past, present and future." IEEE spectrum 34.6 (1997): 52-59.
[2] Bohr, Mark. "The evolution of scaling from the homogeneous era to the heterogeneous era." Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE, 2011.
[3] Mistry, Kaizad, et al. "A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging." Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2007.
[4] Houssa, Michel, ed. High k Gate Dielectrics. CRC Press, 2003.
[5] Doyle, B. S., et al. "High performance fully-depleted tri-gate CMOS transistors." IEEE Electron Device Letters 24.4 (2003): 263-265.
[6] Chaudhry, Anurag, and M. Jagadesh Kumar. "Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review." IEEE Transactions on Device and Materials Reliability 4.1 (2004): 99-109.
[7] Mayer, Richard E. "Learning strategies for making sense out of expository text: The SOI model for guiding three cognitive processes in knowledge construction." Educational psychology review 8.4 (1996): 357-371.
[8] Cristoloveanu, Sorin, Daniela Munteanu, and Michael ST Liu. "A review of the pseudo-MOS transistor in SOI wafers: operation, parameter extraction, and applications." IEEE Transactions on Electron Devices 47.5 (2000): 1018-1027.
[9] Fiorenza, James G., Dimitri A. Antoniadis, and Jesús A. Del Alamo. "RF power LDMOSFET on SOI." IEEE Electron Device Letters 22.3 (2001): 139-141.
[10] "FULLY DEPLETED (FD) VS. PARTIAL DEPLETED (PD) SOI," May 14 2008.
[11] Chaudhry, Anurag, and M. Jagadesh Kumar. "Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review." IEEE Transactions on Device and Materials Reliability 4.1 (2004): 99-109.
[12] Mercha, Abdelkarim, et al. "" Linear kink effect" induced by electron valence band tunneling in ultrathin gate oxide bulk and SOI MOSFETs." IEEE Transactions on Electron Devices 50.7 (2003): 1675-1682.
[13] Dieudonné, François, Jalal Jomaah, and Francis Balestra. "Gate-induced floating body effect excess noise in partially depleted SOI MOSFETs." IEEE Electron Device Letters 23.12 (2002): 737-739.
[14] Lee, Wen-Chin, and Chenming Hu. "Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction-and valence-band electron and hole tunneling." IEEE Transactions on Electron Devices 48.7 (2001): 1366-1373.
[15] Dai, Chih-Hao, et al. "On the origin of hole valence band injection on GIFBE in PD SOI n-MOSFETs." IEEE Electron Device Letters 31.6 (2010): 540-542.
[16] Su, Lisa T., et al. "Measurement and modeling of self-heating in SOI NMOSFET's." IEEE Transactions on Electron Devices 41.1 (1994): 69-75.
[17] Tenbroek, Bernard M., et al. "Self-heating effects in SOI MOSFETs and their measurement by small signal conductance techniques." IEEE Transactions on Electron Devices 43.12 (1996): 2240-2248.
[18] Hu, Chenming, et al. "Hot-electron-induced MOSFET degradation-model, monitor, and improvement." IEEE Journal of Solid-State Circuits 20.1 (1985): 295-305.
[19] Takeda, E., and N. Suzuki. "An empirical model for device degradation due to hot-carrier injection." IEEE electron device letters 4.4 (1983): 111-113.
[20] Takeda, E., A. Shimizu, and T. Hagiwara. "Role of hot-hole injection in hot-carrier effects and the small degraded channel region in MOSFET's." IEEE Electron Device Letters 4.9 (1983): 329-331.
[21] Matthews, James A. "Bipolar junction exhibiting suppressed kirk effect." U.S. Patent No. 5,336,926. 9 Aug. 1994.
[22] Chen, Jone F., et al. "Hot-carrier reliability in submicrometer 40V LDMOS transistors with thick gate oxide." Reliability Physics Symposium, 2005. Proceedings. 43rd Annual. 2005 IEEE International. IEEE, 2005.
[23] Ludikhuize, A. W. "Kirk effect limitations in high voltage IC's." Power Semiconductor Devices and ICs, 1994. ISPSD'94., Proceedings of the 6th International Symposium on. IEEE, 1994.
[24] Ker, Ming-Dou, and Kun-Hsien Lin. "Double snapback characteristics in high-voltage nMOSFETs and the impact to on-chip ESD protection design." IEEE Electron Device Letters 25.9 (2004): 640-642.
[25] Veeraraghavan, Surya, and Jerry G. Fossum. "Short-channel effects in SOI MOSFETs." IEEE Transactions on Electron Devices 36.3 (1989): 522-528.
[26] Liu, Z-H., et al. "Threshold voltage model for deep-submicrometer MOSFETs." IEEE Transactions on electron devices 40.1 (1993): 86-95.
[27] Floyd, Brian H., Fwu-Iuan Hshieh, and Mike F. Chang. "Punch-through field effect transistor." U.S. Patent No. 5,592,005. 7 Jan. 1997.
[28] Troutman, Ronald R. "VLSI limitations from drain-induced barrier lowering." IEEE Journal of Solid-State Circuits 14.2 (1979): 383-391.
[29] Mouli, Chandra V. "SOI device with reduced drain induced barrier lowering." U.S. Patent No. 7,566,600. 28 Jul. 2009.
[30] Heremans, Paul, et al. "Analysis of the charge pumping technique and its application for the evaluation of MOSFET degradation." IEEE transactions on Electron Devices 36.7 (1989): 1318-1335.
[31] Masson, Pascal, J-L. Autran, and Jean Brini. "On the tunneling component of charge pumping current in ultrathin gate oxide MOSFETs." IEEE Electron Device Letters 20.2 (1999): 92-94.
[32] Ortiz-Conde, Adelmo, et al. "A review of recent MOSFET threshold voltage extraction methods." Microelectronics Reliability 42.4 (2002): 583-596.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code