Responsive image
博碩士論文 etd-0716117-165558 詳細資訊
Title page for etd-0716117-165558
論文名稱
Title
奈米顆粒受電磁波加熱之融區變化
Surface deformation of molten region in nanoparticles irradiated by electromagnetic wave
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
35
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-21
繳交日期
Date of Submission
2017-08-16
關鍵字
Keywords
TM波、流動、奈米尺寸、金屬顆粒、作用力
TM wave, flow, external force, metal particles, nano-size
統計
Statistics
本論文已被瀏覽 5674 次,被下載 0
The thesis/dissertation has been browsed 5674 times, has been downloaded 0 times.
中文摘要
本論文探討奈米尺寸之金屬顆粒受到TM波加熱之熔化過程。TM波代表電磁波傳播方向無磁場分量,磁場垂直於傳播方向的平面。TM波正上方入射至金屬顆粒。金屬顆粒在極短的時間內快速熔化,液體金屬受到外力(熱毛細力、表面張力和勞倫茲力)產生流動。本研究探討不同的作用力對奈米級的金屬顆粒熔化過程之影響。

本研究採用模擬軟體COMSOL Multiphysics求解統御方程式包含相位場、電磁波、質量、動量和能量方程式。
Abstract
This study investigates the melting of nano-sized metal particles heating by TM wave. The TM wave represents the magnetic field is perpendicular to the incident plane containing electric field. The incident TM wave from the top to the metal particles melt rapidly in a very short time. Liquid metal began to flow as result of driving by external forces (Thermocapillary force, Surface tension and Lorentz force).This study investigates the effect of different external forces on the melting of metal particles in nanoscale.

This study use the software "COMSOL Multiphysics" to solve the governing equations include phase-field equation, electromagnetic wave equation, mass equation, momentum equation and energy equation.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖次 vi
符號說明 vii
第一章 緒論 1
1-1研究動機及目的 1
1-2相位場法簡介 1
1-3文獻回顧 2
第二章 理論分析 3
2-1相位場方程式 3
2-2電磁波方程式 4
2-3質量守恆方程式 5
2-4動量方程式 5
2-5能量方程式 10
2-6模擬條件 12
2-7模型架構 13
第三章 結果與討論 14
3-1 熱源分析 14
3-2熱毛細力對於金屬熔化後之影響 18
3-3 表面張力對於金屬熔化後之影響 20
3-4 勞倫茲力對於金屬熔化後之影響 21
第四章 結論 22
參考文獻 23
參考文獻 References
[1] L. C. Wrobel and M. H. Aliabadi, The Boundary Element Method. Wiley, 2002.
[2] V. Cristini, J. Bławzdziewicz, and M. Loewenberg, "Drop breakup in three-dimensional viscous flows," Physics of Fluids, vol. 10, no.
8, pp. 1781-1783, 1998.
[3] H. H. Hu, N. A. Patankar, and M. Y. Zhu, "Direct Numerical Simulations of Fluid–Solid Systems Using the Arbitrary Lagrangian–
Eulerian Technique," Journal of Computational Physics, vol. 169, no. 2, pp. 427-462, 2001.
[4] S. Ramaswamy and L. G. Leal, "The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a
Newtonian fluid," Journal of Non-Newtonian Fluid Mechanics, vol. 85, no. 2, pp. 127-163, 1999.
[5] S. Osher and N. Paragios, Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer New York, 2003.
[6] H. Emmerich, The Diffuse Interface Approach in Materials Science. Springer-Verlag Berlin Heidelberg, 2003.
[7] J. S. Rowlinson, "The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density," Journal of
Statistical Physicists Physics, vol. 20, no. 2, pp. 200-244, 1979.
[8] O. Penrose and P. C. Fife, "Thermodynamically consistent models of phase-field type for the kinetic of phase transitions," Physica
D: Nonlinear Phenomena, vol. 43, no. 1, pp. 44-62, 1990.
[9] P. Yue, J. J. Feng, C. Liu, and J. I. E. Shen, "A diffuse-interface method for simulating two-phase flows of complex fluids," Journal
of Fluid Mechanics, vol. 515, pp. 293-317, 2004.
[10] P. C. Hohenberg and B. I. Halperin, "Theory of dynamic critical phenomena,"Reviews of Modern Physics, vol. 49, no. 3, pp. 435-
479, 1977.
[11] D. Jacqmin, "Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling," Journal of Computational Physics,
vol. 155, no. 1, pp. 96-127, 1999.
[12] M. Verschueren, F. N. Van De Vosse, and H. E. H. Meijer, "Diffuse-interface modelling of thermocapillary flow instabilities in a
Hele-Shaw cell," Journal of Fluid Mechanics, vol. 434, pp. 153-166, 2001.
[13] R. W. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine,
vol. 4, no. 21, pp. 396-402,1902.
[14] U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s
Waves)," Journal of the Optical Society of America, vol. 31, no. 3, pp. 213-222, 1941.
[15] A. Hessel and A. A. Oliner, "A New Theory of Wood’s Anomalies on Optical Gratings," Applied Optics, vol. 4, no. 10, pp. 1275-
1297, 1965.
[16] J. Pearce, A. Giustini, R. Stigliano, and P. Jack Hoopes, "Magnetic Heating of Nanoparticles: The Importance of Particle
Clustering to Achieve Therapeutic Temperatures," Journal of Nanotechnology in Engineering and Medicine, vol. 4, no. 1, 2013.
[17] J. W. Cahn and J. E. Hilliard, "Free Energy of a Nonuniform System. I. Interfacial Free Energy," The Journal of Chemical Physics,
vol. 28, no. 2, pp. 258-267, 1958.
[18] F. Kong, H. Zhang, and G. Wang, "Numerical Simulation of Transient Multiphase Field During Hybrid Plasma-Laser Deposition
Manufacturing," Journal of Heat ransfer, vol. 130, no. 11, 2008.
[19] Y. Sun and C. Beckermann, "Sharp interface tracking using the phase-field equation," Journal of Computational Physics, vol. 220,
no. 2, pp. 626-653, 2007.
[20] M. H. Nayfeh and M. K. Brussel, Electricity and Magnetism. Wiley, 1985.
[21] H. Raether, "Surface plasmons on smooth surfaces," in Surface Plasmons on Smooth and Rough Surfaces and on
GratingsBerlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 4-39.
[22] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, vol. 408, no.
3, pp. 131-314, 2005.
[23] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Harcourt, 1976.
[24] C. C. Han, "Study of Optically Tunable Surface Plasmon Resonance Based on Dye-Doped Liquid Crystal Cladded Kretschmann
Structure and Its Applications," Department of Photonics, National Sun Yet-sen University, 2013.
[25] 邱國斌、蔡定平 (2006, 04)。〈金屬表面電漿簡介〉。物理雙月刊,廿八卷二期,頁473-485
[26] 吳民耀、劉威志 (2006, 04)。〈表面電漿子理論與模擬〉。物理雙月刊,廿八
卷二期,頁486-487
[27] 邱國斌、蔡定平 (2003, 06) 。〈左手材料奈米平板的表面電漿量子簡介〉。物理雙月刊,廿五卷三期,頁373
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.186.72
論文開放下載的時間是 校外不公開

Your IP address is 18.191.186.72
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code