Responsive image
博碩士論文 etd-0716117-201416 詳細資訊
Title page for etd-0716117-201416
論文名稱
Title
表面電漿邊界層之不同時間尺度研究
A study of Time Scales for Plasma Boundary Layers on a Surface
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-21
繳交日期
Date of Submission
2017-08-16
關鍵字
Keywords
磁場、電場、磁性流體力學、薩哈方程式、溫度邊界層、速度邊界層
Magnetohydrodynamics, Saha equation, magnetic field, temperature boundary layer, electric field, velocity boundary layer
統計
Statistics
本論文已被瀏覽 5673 次,被下載 0
The thesis/dissertation has been browsed 5673 times, has been downloaded 0 times.
中文摘要
本研究以磁性流體力學模擬在兩個無窮遠之電極板間,為低壓且高密度之二維空間的氬氣(Argon)電漿,在瞬間給定一低溫底板定偏壓電位之電漿輸送現象。其中考慮黏滯力、離子與電子電離化、結合化、電場與磁場效應。模擬結果與時間尺度分析顯示出,電子、離子及中性粒子於工件表面的密度、速度、溫度、黏滯係數、熱傳導係數、磁場、電場,以及其邊界層之變化。
Abstract
This study purposes a magnetohydrodynamics (MHD) model to simulate the unsteady two-dimensional transport phenomena, magnetic field and electric field in argon (Ar) plasma, under low pressure and high density between two infinite planes, while the lower plane has a negative voltage. This model accounts for viscous, ionization and recombination effects. The results and times scales analysis show density, velocity, temperature, magnetic field, electric field and the boundary layer thickness of the electrons, ion and neutral. The property of thermal conductivity is a function of temperature.
目次 Table of Contents
目錄
論文審定書 i
中文摘要 ii
Abstract iii
符 號 說 明 vi
第一章 緒論 1
1.1 研究背景及動機 1
1.2 文獻回顧 2
1.3 本論文研究內容簡介 3
1.4 論文架構 4
第二章 理論分析與方法 5
2.1系統模型與基本假設之條件 5
2.2 統御方程式 6
2.2.1質量守恆方程式 6
2.2.2動量方程式 9
2.2.3能量方程式 18
2.2.4馬克士威方程式 21
2.3研究與模擬之流程圖 24
第三章 研究結果與討論 25
3.1 電位傳遞及影響 25
3.2 密度變化 26
3.2.1 電子密度變化 26
3.2.2 離子密度變化 27
3.2.3 中性粒子密度變化 28
3.3 溫度變化 29
3.3.1 電子溫度變化 29
3.3.2 離子溫度變化 30
3.3.3 中性粒子溫度變化 31
3.4速度變化 32
3.4.1 電子速度變化 32
3.4.2 離子速度變化 35
3.4.3 中性粒子速度變化 37
3.5動量邊界層尺度分析 39
3.5.1 電子動量邊界層 39
3.5.2 離子動量邊界層 40
3.5.3 中性粒子動量邊界層 41
3.6熱邊界層尺度分析 42
3.6.1 電子熱邊界層 42
3.6.2 離子熱邊界層 43
3.6.3 中子熱邊界層 44
3.7 鞘層尺度分析 45
第四章 結論 46
參 考 文 獻 47
參考文獻 References
[1] L. Tonks and I. Langmuir, “A general theory of the plasma of an Arc,” Phys. Rev. , Vol. 34, pp. 876 - 922, 1929.
[2] D. Bohm, The Characeristics of Electrical Discharges in Magnetic Fields, A. Guthrie and R.K. Wakerling, Eds. New York and London: McGraw-Hill, 1949.
[3] R.N. Franklin, “The plasma-sheath boundary region,” J. Phys. D: Appl. Phys., vol. 36, pp. 309 - 320, 2003.
[4] R.N. Franklin, “Where is the ‘sheath edge’ ?,” J. Phys. D: Appl. Phys., vol. 37, pp. 1342 - 1345, 2004.
[5] K.-U. Riemann, “Kinetic theory of the plasma sheath transition in a weakly ionized plasma,” Physics of Fluids, vol. 24, pp. 2163 - 2172, 1981.
[6] K.-U. Riemann, “The plasma sheath transition of a weakly ionized plasma with reflecting walls,” Proc. XVIIth Int. Conf. on Phenomena in Ionixed Gases, Budapest, pp. 519 - 521, 1985.
[7] K.-U. Riemann, “The Bohm criterion and the field singularity at the sheath edge,” Physics of Fluids B, vol. 1, pp. 961 - 963, 1989.
[8] K.-U. Riemann, “The Bohm criterion and sheath formation,” J. Physics D: Applied Physics, vol. 24, pp. 493 - 518, 1991.
[9] K.-U. Riemann, “The Bohm criterion and boundary conditions for a multicomponent system,” IEEE Transactions on Plasma Science, vol. 23, pp. 709 - 716, 1995.
[10] S.I. Braginskii, 1965, Review of Plasma Physics, vol. 1(ed. M.A. Leontovich) pp. 205 - 311. Consultants Bureau, New York.
[11] Widner, M., Alexeff, I., Jone, W.D., and Lonngren, K.E., 1970, “Ion Acoustic Wave Excitation and Ion Sheath Evolution,” Physics of Fluids, vol. 13, pp. 2532 - 2540.
[12] Lieberman, M.A., 1989, “Model of Plasma Immersion Ion Implantation,” J. Applied Physics, vol. 66, pp. 2926 - 2929.
[13] Vahedi, V., Lieberman, M.A., Alves, M.V., Verboncoeur, J.P., and Birdsall, C.K., 1991, “A One-Dimensional Collisional Model for Plasma-Immersion Ion Implantation,” J. Applied Physics, vol. 69, pp. 2008 - 2014.
[14] Stewart, R.A., and Lieberman, M.A., 1991, “Mode of Plasma Immersion Ion Implantation for Voltage Pluses with Finite Rise and Fall Times,” J. Applied Physics, vol. 70, pp. 3481 - 3487.
[15] Riemann, K.-U. and Daube, Th., 1999, “Analytical Model of the Relaxation of a Collisionless Ion Matrix Sheath,” J. Applied Physics, vol. 86, pp. 1202 - 1207.
[16] Daube, Th., Meyer, P., Riemann, K.-U., and Schmitz, H., 2002, “Relaxation Phenomena in Plused Discharges,” J. Applied Physics, vol. 91, pp. 1787 - 1796.
[17] Riemann, K.-U., 1991, “The Bohm criterion and sheath formation,” J. Physics D: Applied Physics, vol. 24, pp. 493 - 518.
[18] Hsu, K.C., and Pfender, E., 1983, “Analysis of the Cathode Region of a Free-Burning High Intensity Argon Arc,” J. Applied Physics, vol. 54, pp. 3818 - 3824.
[19] Montierth, L.M., Neuman, W.A., and Morse, R.L., 1992, “Fluid Model Treatment of Surface Plasma Structures,” Physics of Fluids B, vol. 4, pp. 784 - 795.
[20] Scheuer, J.T. and Emmert, G.A., 1990, “A Fluid Treatment of the Plasma Presheath for Collisionless and Collisional Plasmas,” Physics of Fluids B, vol. 2, pp. 445 - 451.
[21] Stangeby, P.C., 2000, The Plasma Boundary of Magnetic Fusion Devices, Institute of Physics Publishing, Bristol, UK.
[22] Bissell, R.C., Johnson, P.C., and Stangeby, P.C., 1989, “A Review of Models for Collisionless One-Dimensional Plasma Flow to a Boundary,” Physics of Fluids B, vol. 1, pp.1133 - 1140.
[23] Hong, M.P., and Emmert, G.A., 1995, “Two-Dimensional Fluid Simulation of Expanding Plasma Sheaths,” J. Applied Physics, vol. 78, pp. 6967 - 6973.
[24] Sheridan, T.E. and Alport, M.J., 1994, “Two-dimensional Model of Ion Dynamics during Plasma Source Ion Implantation,” Applied Physics Lett, vol. 64, pp. 1783 - 1785.
[25] Kim, H.C., Iza, F., Yang, S.S., Radmilovic ‘-Radjenovic’, M., and Lee, J.K., 2005, “Particle and Fluid Simulations of Low-Temperature Plasma Discharges: Benchmarks and Kinetic Effects,” J. Physics D: Applied Physics, vol. 38, pp. R283 - R301.
[26] Wei, P.S, and Yeh, F.B.,2000, “Fluid-like Transport Variables in a Kinetic, Collisionless Plasma near a Surface with Ion and Electron Reflection,” IEEE Transactions on Plasma Science, vol. 28, pp. 1233 - 1243.
[27] T. Kunugi, 1995, “Numerical simulation of heat transfer and fluid flow of a non-equilibrium argon plasma jet with confined wall”, Fusion Engineering and Design 28, pp.63-71.
[28] L. M. Montierth and W. A. Neuman, 1992, “Fluid model treatment of surface plasma structures”, Phys. Fluids B4, pp.784-795.
[29] C. S. Wu, 1999, “Modeling the anode boundary layer of high-intensity argon arcs”, Computational Materials Science 15, pp.302-310.
[30] M. A. Lieberman and A. J. Lichtenberg, 1994, “Principles of plasma discharges and materials processing”, Wiely.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.175.182
論文開放下載的時間是 校外不公開

Your IP address is 18.188.175.182
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code