Responsive image
博碩士論文 etd-0717101-180240 詳細資訊
Title page for etd-0717101-180240
論文名稱
Title
多環芳香烴化合物與溶解性有機物結合係數之動力學研究
Kinetic Study of the Binding Constants of Polycyclic Aromatic Hydrocarbons and Dissolved Organic Matter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-23
繳交日期
Date of Submission
2001-07-17
關鍵字
Keywords
溶解性有機物、腐植酸、結合係數、動力學、離子'強度、多環芳香烴
ionic strength, PAHs, DOM, humic acid, pyrene, kinetic, binding constants
統計
Statistics
本論文已被瀏覽 5720 次,被下載 4376
The thesis/dissertation has been browsed 5720 times, has been downloaded 4376 times.
中文摘要
摘 要

疏水性有機污染物在環境中不易分解,具有毒性及高生物累積性,因此其宿命與傳輸機制一直為學界研究重點。由於其疏水性質,疏水性有機污染物在環境中的傳輸宿命以吸附行為為主,但除了一般認知的水-顆粒兩相間的吸附現象以外,溶解性有機物的參與無疑使整個吸附機制更形複雜,卻也更接近真實環境中疏水性有機物的實際吸附行為。

在目前各相關領域中,對疏水性有機污染物與溶解性有機物的結合機制各家說法不一,但所有研究在其實驗設計上都脫離不了對平衡的假設。von Wandruszka, Ragle, and Engebretson, (1997); Engebretson and von Wandruszka, (1998)等人提出,HOPs、DOM與金屬陽離子間的反應是緩慢、可逆甚至是擺盪(oscillating)的動力學,此一現象會影響到實驗的再現性與否,以及對數據的解釋。因此本研究以螢光衰減法對pyrene注入HA溶液中之平衡反應動力學進行一系統化的研究。

本研究發現pyrene在HA溶液中螢光值的變化,主要分成兩個階段:一開始受到pyrene擴散分佈以及pyrene與HA分子反應的影響,螢光值迅速下降,其中又以前者為主要的控制因子;而後,則因為瓶壁吸附pyrene的作用使螢光值緩慢下跌。Pyrene分子在HA溶液中的散佈速率主要受HA分子大小以及HA分子數量多寡所控制,當離子強度提高,所添加的陽離子造成HA分子結構的捲曲縮小,減少pyrene分子在擴散階段所遭受的阻力,使得擴散速率常數變大,當系統中HA分子數量變小時也有著相同的結果。離子強度可能造成pyrene與HA發生鹽析作用,除了使pyrene瓶壁效應更加明顯外,同時也促使pyrene與HA間的疏水性鍵結更趨穩固;在本研究中所得到的結果,後者效應應大於前者。

至於在本研究之Mg2+-LHA系統中,並沒有觀察到所謂鎂離子「游移」(migration)在LHA分子中、需長時間方能安定的結果;造成與E & W等學者實驗結果不同之因,推論應為HA種類不同所致,也因此Engebretson and von Wandruszka等學者的實驗結果,並不能直接對其他文獻所得的結果提出質疑或反駁。

此外,本研究並以Mg2+、Ca2+、Sr2+等不同陽離子進行pyrene與LHA結合係數的研究。離子強度造成pyrene與LHA結合係數Kdom的變化,主要肇因於腐植酸在陽離子介入後結構與性質發生變化所致,而各種陽離子與腐植質上不同的吸附位基有著不同的反應性,不同陽離子對Kdom便有著不同的影響。因此Mg2+、Ca2+、Sr2+等不同陽離子除其電荷密度的差異造成對HA分子上負電性官能基有著不同的鍵結能力以外,各種陽離子與腐植質上不同的吸附位基間不同的反應性亦不能忽視。

Abstract
ABSTRACT

Hydrophobic organic pollutants (HOPs) are in general characterized by high toxicity, long environmental half-life and high bio-accumulation factors. Due to their hydrophobicity, HOPs tend to sorb onto particles in environment. The influence of the dissolved organic matters (DOMs) on the sorption partition coefficient is observed because of their interactions with HOPs. This binding between DOM and HOPs increases apparent solubility and mobility of the HOPs in natural aquatic system. On the purpose of obtaining data closer to the real world, many aquatic factors, such as the concentration and types of DOM, pH value and ionic strength, are studied intensively recently.

There are many studies about the mechanisms in the association of DOM and HOPs. Most of them assume achievement of equilibrium in their measurement. Recently, it was reported (Engebretson and von Wandruszka, 1998) that slow, revering, and even oscillating kinetics are observed. It is great concern and interest to those related studies in literatures. Complicated kinetic may in fact be a cause of the reproducibility problems for measurements of HOPs associated with both humic acid and metals. As such, by monitoring fluorescence intensity, we investigate the equilibrium kinetic of pyrene in HA solutions.

In this study, results show that there are two stages of the fluorescence intensity after pyrene spiked into HA solutions: First, the fluorescence intensity decreases steeply due to the first dispersion of pyrene and the reaction of pyrene and HA (the front is dominance). Secound, fluorescence intensity decreases gently because of wall-effect. The dispersion rate of pyrene in HA solutions is difference with HA molecular size and quantity. As the ionic strength rising, cations reacting with specific binding sites on HA, the molecules’ configuration of HA is changed, and less obstruct for dispersing of pyrene. It works as well as little molecular quantity. For second stage when ionic strength rising, wall- associations is less because of the hydrophobic-binding of pyrene and LHA is more stronger.

Furthermore, it is not observed the “migration” of Mg2+ within the LHA molecular structure as described by Engebretson and von Wandruszka .The reasons that make different results may depend on the species of humic acid. Therefore, the observations of Engebretson and von Wandruszka could not be used directly questioning those results in literatures.

In addition, the effects of various cations (Mg2+, Ca2+and Sr2+) on Kdom are studied. It is believed different cation reacts with different specific binding sites on HA. As such, both charge density and affinity of cation with specific binding sites on HA should be considered in discussing the effects of metal ionic on the binding constants between PAHs and DOM.

目次 Table of Contents
第一章 前言 1
第二章 文獻回顧 3
2-1 溶解性有機物 3
2-1-1何謂溶解性有機物? 3
2-1-2腐植質概述 4
2-2 疏水性有機污染物 7
2-2-1疏水性有機污染物概述 7
2-2-2多環芳香烴化合物 8
2-3 HOPs之吸附行為文獻回顧 12
2-3-1 研究進程 12
2-3-2 水環境因子之影響 13

第三章 實驗材料及方法 16
3-1 實驗材料 16
3-2 實驗方法 17
3-2-1 實驗方法的選用 17
3-2-2 螢光衰減法原理概述 19
3-2-3 校正公式 21
3-3 實驗步驟 23
3-3-1 螢光衰減實驗步驟 23
第四章 結果與討論 25
4-1 瓶壁效應 25
4-2 影響平衡動力學因素之探討 25
4-2-1 不同HA濃度的影響 28
4-2-2 不同離子強度的影響 31
4-2-3 不同陽離子種類的影響 35
4-2-4 不同HA種類的影響 40
4-2-5 平衡動力學模式綜合討論 45
4-3 螢光衰減法實驗步驟之確立與應用 47
4-3-1 螢光衰減理論應用之確立 48
4-3-2 螢光衰減法趨勢線之應用 50
4-4 平衡動力學上的疑點 57
4-4-1 鎂離子與LHA的平衡時間 58
4-4-2 實驗系統上的差異 58
第五章 結論與建議 65
5-1 結論 65
5-2 建議 67
參 考 文 獻 69
附 錄 77

參考文獻 References
參 考 文 獻
Backhus, D. A. and Gschwend, P. M. (1990) Fluorescent polycyclic aromatic hydrocarbons as probes for studying the impact of colloids on pollutant transport in groundwater. Environ. Sci. Technol. 24, 1214-1223.
Bratha, R., and Hus, T. S.(1976)In bound and conjugated pesticide residues. ACS Symposuim Series 29; American Chemical Society : Washington, DC, 258-271.
Brunk, B. K., Jirka, G. H. and Lion, L. W. (1997) Effects of salinity changes and the formation of dissolved organic matter coatings on the sorption of phenanthrene: Implications for pollutant trapping in estuaries. Environ. Sci. Technol. 31, 119-125.
Carter, C. W. and Suffet, I. H. (1982) Binding of DDT to dissolved humic materials. Environ. Sci. Technol. 16, 735-740.
Chen, S., Inskeep, W. P., Williams, S. A. and Callis, P. R. (1992) Complexation of 1-naphthol by humic and fulvic acids. Soil Sci. Soc. Am. J. 56, 67-73.
Chen, S., Inskeep, W. P., Williams, S. A. and Callis, P. R. (1994) Fluorescence lifetime measurements of fluoranthene, 1-naphthol, and Napropamide in the presence of dissolved humic acid. Environ. Sci. Technol. 28, 1582-1588.
Chin, Y-P and Gschwend, P. M. (1992) Partitioning of polycyclic aromatic hydrocarbons to marine porewater organic colloids. Environ. Sci. Technol. 26, 1621-1626.
Chin, Y-P, Aiken, G. and O’Loughlin, E. (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 28, 1853-1858.
Chin, Y-P, Aiken, G. R. and Danielsen, K. M. (1997) Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ. Sci. Technol. 31, 1630-1635.
Chiou, C. T. (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ. Sci. Technol. 19, 57-62.
Chiou, C. T., Malcolm, R. L., Brinton, T. I. and Kile, D. E. (1986) Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol. 20, 502-508.
Chiou, C. T., Peter, L. J. and Freed, V. H. (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science 206, 831-832.
Chiou, C. T., Porter, P. E. and Schmedding, D. W. (1983) Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ. Sci. Technol. 17, 227-231.
Chiou, C. T., Schmedding, D. W. and Manes, M. (1982) Partitioning of organic compounds in octanol-water systems. Environ. Sci. Technol. 16, 4-10.
Chiou, C. T., Shoup, T. D. and Porter, P. E. (1985) Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Org. Geochem. 8, 9-14.
Danielsen, K. M., Chin, Y-P, Buterbaugh, J. S., Gustafson, T. L. and Traina, S. J. (1995) Solubility enhancement and fluorescence quenching of pyrene by humic substances: The effect of dissolved oxygen on quenching processes. Environ. Sci. Technol. 29, 2162-2165.
Davis, J. A. and Gloor, R. (1981) Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight. Environ. Sci. Technol. 15, 1223-1229.
Edwards, N. T. (1983) Polycyclic aromatic hydrocarbons (PAH's) in the terrestrial environment - a review. J. Environ. Qual. 12, 427-441.
Engebretson, R. R. and von Wandruszka, R. (1994) Microorganization in dissolved humic acids. Environ. Sci. Technol. 28, 1934-1941.
Engebretson, R. R. and von Wandruszka, R. (1997) The effect of molecular size on humic acid associations. Organic Geochemistry 26, 759-767.
Engebretson, R. R. and von Wandruszka, R. (1998) Kinetic aspects of cation-enhanced aggregtion in aqueous humic acids. Environ. Sci. Technol. 32, 488-493.
Engebretson, R. R. and von Wandruszka, R. (1998) Effects of Humic-Acid Purification on Interaction with Hydrophobic Organic-Matter-Evidence from Fluorescence Behavior. Environ. Sci. Technol. 33, 4299-4303.
Ephraim, J. H., Pettersson, C., Norden, M. and Allard, B. (1995) Potentiometric titrations of humic substances: do ionic strength effects depend on the molecular weight? Environ. Sci. Technol. 29, 622-628.
Futoma, D. J., Smith, S. R., Smith, T. E. and Tanaka, J. (1981) The analysis of polycyclic aromatic hydrocarbons in water system, CRC Press, Florida.
Gauthier, T. D. Shane, E. C., Guerin, W. F., Seitz, W. R. and Grant, C. L. (1986) Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol. 20, 1162-1166.
Gschwend, P. M. and Wu, S. C. (1985) On the constancy of sediment-water partition coefficients of hydrophobic organic pollutants. Environ. Sci. Technol. 19, 90-96.
Herbert, B. E., Bertsch, P. M. and Novak, J. M. (1993) Pyrene sorption by water-soluble organic carbon. Environ. Sci. Technol. 27, 398-403.
Johnson, W. P. and Amy, G. L. (1995) Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments. Environ. Sci. Technol. 29, 807-817.
Jones, K. D. and Tiller, C. L. (1999) Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: a comparison of dissolved and clay bound humic. Environ. Sci. Technol. 33, 580-587.
Karickhoff, S. W., Brown, D. S. and Scott, T. A. (1979) Sorption of hydrophobic pollutants on natural sediments. Wat. Res. 13, 241-248.
Koelmans, A. A. and Lijklema, L. (1992) Sorption of 1,2,3,4-tetrachlobenzene to sediments: the application of a simple three phase model. Chemosphere 25, 313-325.
Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy, Plenum Press, New York.
Landrum, P. F. Nihart, S. R., Eadie, B. J. and Gardner, W. S. (1984) Reverse-phase separation method for determining pollutant binding to aldrich humic acid and dissolved organic carbon of natural water. Environ. Sci. Technol. 18, 187-192.
Lassen, P., Doulsen, M. E., Frank, S-L and Carlsen, L. (1997) Leaching of selected PAH's and hetero-analoguts from an organic matrix into synthetic ground water. Influence of dissolved humic material. Chemosphere 34, 335-344.
Lee, C-L, Huang, H-T and Kuo, L-J (2000) Experimental validation of an OMS model for the sorption behaviors of PAHs onto aluminum oxide coated with humic acids. J. Environ. Sci. Health A35, 515-536.
Lee, C-L and Kuo, L-J (1999) Quantification of the dissolved organic matter effect on the sorption of hydrophobic organic pollutant: application of an overall mechanistic sorption model. Chemosphere 38, 807-821.
Levenspiel, O. (1999) Chemical Reaction Engineering. 3rd ed, John Wiley & Sons. New York.
Macky, A. A. and Gschwend P. M.(2001)Enhanced Concentrations of PAHs in Groundwater at a Coal Tar Site. Environ. Sci. Technol. 35, 1320-1328.
Magee, B. R., Lion, L. W. and Lemley, A. T. (1991) Transport of dissolved organic macromolecules and their effect on the transport of Phenanthrene in porous media. Environ. Sci. Technol. 25, 323-331.
Manunza, B., Deiana, S., Maddau, V., Gessa, C. and Seeber, R. (1995) Stability constants of metal-humate complexes: titration data analyzed by bimodal Gaussian distribution. Soil Sci. Soc. Am. J. 59, 1570-1574.
McCarthy, J. F. and Jimenez, B. D. (1985) Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: binding and dissociation. Environ. Sci. Technol. 19, 1072-1076.
Means, J. C. (1995) Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Mar. Chem. 51, 3-16.
Means, J. C. and Wijayaratne, R. (1982) Role of natural colloids in the transport of hydrophobic pollutants. Science 215, 968-970.
Means, J. C., Wood, S. G., Hassett, J. J. and Banwart, W. L. (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 14, 1524-1528.
Menzie, C. A., Potocki, B. B. and Santodonato, J. (1992) Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 26, 1278-1284.
Miller, M. M., Wasik, S. P., Huang, G-L, Shiu, W-Y and Mackay, D. (1985) Relationships between octanol-water partition coefficient and aqueous solubility. Environ. Sci. Technol. 19, 522-529.
Morra, M. J., Corapcioglu, M. O., Wandruszka, R. V., Marshall, D. B. and Topper, K. (1990) Fluorescene quenching and polarization studies of Naphthalene and 1-Naphthol interaction with humic acid. Soil Sci. Soc. Am. J. 54, 1283-1289.
Murphy, E. M., Zachara, J. M., Smith, S. C., Phillips, J. L. and Wietsma, T. W. (1994) Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environ. Sci. Technol. 28, 1291-1299.
Paolis, F. D. and Kukkonen, J. (1997) Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere 34, 1693-1704.
Parker, C. A. (1968) Photoluminescence of solutions. pp. 222. Elsevier: Amsterdam.
Puchaiski, M. M., Morra, M. J. and Wandruszka, R. V. (1992) Fluorescene quenching of synthetic organic compounds by humic materials. Environ. Sci. Technol. 26, 1787-1792.
Raber, B., K?gel-Knabner, I., Stein, C. and Klem, D. (1998) Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere 36, 79-97.
Ragle, C. S., Engebretson, R. R. and Wandruszka, R. V. (1997) The sequestration of hydrophobic micropollutants by dissolved humic acids. Soil Sci. 162, 106-114.
Rav-acha, Ch. and Rebhun, M. (1992) Binding of organic solutes to dissolved humic substances and its effects on adsorption and transport in the aquatic environment. Wat. Res. 26, 1645-1654.
Rebhun, M., Smedt, F. DE and Rwetabula, J. (1996) Dissolved humic substances for remediation of sites contaminated by organic pollutants. Binding-desorption model predictions. Wat. Res. 30, 2027-2038.
Ricca, G., Federico, L., Astori, C. and Gallo, R. (1993) Structural investigations of humic acid from leonardite by spectroscopic methods and thermal analysis. Geoderma 57, 263-274.
Rutherford, D. W., Chiou, C. T. and Kile, D. E. (1992) Influence of soil organic matter composition on the partition of organic compounds. Environ. Sci. Technol. 26, 336-340.
Schlautman, M. A. and Morgan, J. J. (1993) Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ. Sci. Technol. 27, 961-969.
Schlautman, M. A. and Morgan, J. J. (1994) Adsorption of aquatic humic substances on collidal-size aluminum oxide particles: influence of solution chemistry. Geochimica et Cosmochimica Acta. 58, 4293-4303.
Schnitzer, H. R. and Khan, S. U. (1972) Humic Substanes in the Environment; Marcal Dekke: New York.
Schnitzer, H. R. and Schnitzer, M. (1995) Naturwissenschaften, 82, 487-498.
Schnitzer, M. (1978) Humic substances: chemistry and reactions. In Soil Organic Matter (Edited by Schnitzer M. and Khan S. U.), pp. 1-64. Elsevier Science Publishing Company, New York.
Schulten, H-R and Schnitzer, M. (1997) Chemical Model structures for soil organic matter and soils. Soil Sci. 162, 115-130.
Shannon, R. D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 32, 751-767.
Shimizu, Y. and Liljestrand, H. M. (1991) Sorption of polycyclic aromatic hydrocarbons onto natural solids: determination by fluorescence quenching method. Wat. Sci. Technol. 23, 427-436.
Skoog, D. A. and Leary J. J. (1992) Principles of Instrumental analysis, 4nded., Saunders College Publishing.
Sparks, D. L. (1995) Environmental Soil Chemistry, Academic Press, San Diego. California.
Stevenson, F. J. (1994) Humus Chemistry: genesis, composition, reactions, 2nd ed., John Wiley & Sons, New York.
Tiller, C. L. and Jones, K. D. (1997) Effect of dissolved oxygen and light exposure on determination of Koc values for PAHs using fluorescene quenching. Environ. Sci. Technol. 31, 424-429.
Traina, S. J., Spontak, D. A. and Logan, T. J. (1989) Effects of cations on complexation of Naphthalene by water-soluble organic carbon. Environ. Qual. 18, 221-227.
Voice, T. C. and Weber, W. J., Jr. (1985) Sorbent concentration effects in liquid/solid partitioning. Environ.Sci. Technol. 19, 789-796.
Voice, T. C., Rice, C. P. and Weber, W. J., Jr. (1983) Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems. Environ. Sci. Technol. 17, 513-518.
von Wandruszka, R., Ragle, C. and Engebretson, R. (1997) The role of selected cations in the formation of pseudomicelles in aqueous humic acid. Talanta 44, 805-809.
von Wandruszka-R.(1998)The Micellar Model of Humic-Acid - Evidence from Pyrene Fluorescence Measurements. Soil Science, 163, 921-930.
Wagoner, D. B. and Christman, R. F. (1997) Molar mass and size of Suwannee River natural organic matter using multi-angle laser light scattering. Environ. Sci. Technol. 31, 937-941.
Wershaw, R. L. (1986) A new model for humic materials and their interactions with hydrophobic organic chemicals in soil-water or sediment-water systems. J. Contamin. Hydro. 1, 29-45.
Wershaw, R. L. (1989) Application of a membrane model to the sorptive interactions of humic substances. Environmental Health Perspectives 83, 191-203.
Wershaw, R. L. (1993) Model for humics in soils and sediments. Environ. Sci. Technol. 27, 814-816.
Zhou, J. L. and Rowland, S. J. (1997) Evaluation of the interactions between hydrophobic organic pollutants and suspended particles in estuarine waters. Wat. Res. 31, 1708-1718.
Zhou, J. L., Mantoura, R. C. F. and Harland, B. J. (1995a) Tefluthrin sorption to mineral particles: role of particle organic coatings. Intern. J. Environ. Anal. Chem. 58, 275-285.
Zhou, J. L., Rowland, S. and Mantoura, R. F. C. (1994) The formation of humic coatings on mineral particles under simulated estuarine conditions - a mechanistic study. Wat. Res. 28, 571-579.
Zhou, J. L., Rowland, S. and Mantoura, R. F. C. (1995b) Partition of synthetic pyrethroid insecticides between dissolved and particulate phases. Wat. Res. 29, 1023-1031.
郭利榮 (1999),溶解性有機相對疏水性有機污染物於水體中吸附行為影響之探討,國立中山大學海洋環境及工程研究所碩士論文。
王惠鈴 (2000),離子強度效應對多環芳香烴化合物與溶解性有機物結合係數影響之研究,國立中山大學海洋環境及工程研究所碩士論文。
陳鎮東 (1994),海洋化學,國立編譯館,台北市。
第一屆環境荷爾蒙與持久性有機污染物研討會論文集(2000),環境品質文教基金會、嘉南要理學院。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code