Responsive image
博碩士論文 etd-0717106-184541 詳細資訊
Title page for etd-0717106-184541
論文名稱
Title
奈米粉體強化鎂基複合材料之微觀組織與機械性質強化機構
Microstructures and Mechanical Strengthening Mechanisms of Nanoparticle Reinforced Mg Based Composites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
244
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-13
繳交日期
Date of Submission
2006-07-17
關鍵字
Keywords
潛變機構、強化機構、微觀組織
strengthening mechanism, creep mechanism, microstructure
統計
Statistics
本論文已被瀏覽 5652 次,被下載 1469
The thesis/dissertation has been browsed 5652 times, has been downloaded 1469 times.
中文摘要
在各種奈米級粉末、細線、以及細管的成功開發之下,為現有的商用材料在功能上或結構特性上開啟了新型態的改質方式。本研究採用了AZ61鎂合金作為複合材料的母材,以及利用鑄造、粉末冶金、以及噴覆成型的方式加入奈米級SiO2粉末製作高功能鎂基複合材料。

本研究中之AZ61鎂合金複合材料均經過強化機構、破壞韌性、以及彎曲韌性等分析。且本研究中所有鑄造、粉末冶金、以及噴覆成型製作之複合材料均於測試前經過高擠型比之熱擠型。經由噴覆成型製程製作之複合材料表現出最佳的奈米粉粒分布以及韌性,但所能加入之奈米粉數量卻是有限的。經由粉末冶金方式製作之複合材料,由於本身內部含有較多額外之氧化鎂,因此擁有最高的室溫強度。經由Orowan強化機構的分析可以有效評估該複合材料之強度,因此亦可推論出這些強化相保有一定程度的合理分佈。而對於含有強化相高於3 %的複合材料而言,所測得的實驗值與理論值差距甚大,暗示著該強化相的分布極為不佳。

本研究亦探討了這些複合材料之潛變機構。所有的拉伸試片在200-400oC的溫度範圍,以及1x10-3到1x10-1 s-1之應變速率下進行。該潛變機構在這樣的實驗狀況之下為差排潛變,同時在低應變速率下的補償機構為晶格擴散,而在高應變速率下則為晶界擴散。
Abstract
The success in fabrication of various nano-sized powders, wires or tubes has arisen the new possibility in modifying the existing commercial materials in terms of their functional or structural characteristics. In this study, the AZ61 Mg alloy is adopted as the matrix, and nano-sized SiO2 particulates are introduced into the alloy by means of casting, powder metallurgy, or spray forming processes to fabricate a high performance Mg matrix composite.

The strengthening mechanisms, fracture toughness and bending toughness of the AZ61 Mg based composites are examined. The composites were prepared either by spray forming, ingot metallurgy, or powder metallurgy, followed by severe hot extrusion. The spray formed composites exhibit the best nano particle distribution and toughness, but the volume fraction of the nano particles that can be inserted is limited. The nano composites fabricated through the powder metallurgy method possess the highest strength due to the extra strengthening effect from the MgO phase. Strengthening analysis based on the Orowan strengthening mechanism can predict well the composite strength provided that the nano particles are in reasonably uniform dispersion. For composites containing higher nano particle volume fractions greater than 3%, the experimental strength data fall well below the theoretical predictions, suggesting poor dispersion of the reinforcement.

The creep properties of the composites are also explored. The specimens are subjected to tensile loading at temperatures 200 to 400oC and strain rates 1x10-3 to 1x10-1. The creep mechanism is identified as dislocation creep controlled with the rate controlling diffusion step being the magnesium lattice diffusion at low strain rates and grain boundary diffusion at high strain rates.
目次 Table of Contents
Table of Content………………………………………………………………………………i
List of Tables…………………………………………………………………………………iv
List of Figures………………………………………………………………………………...vi
List of Symbols……………………………………………………………………………...xiv
Abstract……………………………………………………………………………………...xvi
中文提要….….….….….….….…………………………………………………………….xvii
謝誌…............….….………………………………………………………………….........xviii
Chapter 1 Introduction……………………………………………………...…………………1
1.1 Characteristics of magnesium alloys…………………...……………………….……….2
1.2 Properties of magnesium alloys…………………………………………………………3
1.2.1 The classification of magnesium alloys………………………………………….3
1.2.2 Modification of magnesium alloys……………………………………………….4
1.2.3 Grain size refinements……………………………………………………………6
1.2.3.1 Rapid solidification (RS)………………………………………………….7
1.2.3.2 Powder metallurgy (PM)………………………………………………….8
1.2.3.3 Rolling…………………………………………………………………….9
1.2.3.4 Equal channel angular pressing (ECAP)………………………………...10
1.2.3.5 Forging…………………………………………………………………..11
1.2.3.6 Extrusion……………………………………………...….………………11
1.3 Magnesium metal matrix composites…………………………………………………..12
1.4 Oxide dispersion strengthening………………………………………………………...16
1.4.1 Flow stress………………………………………………………………………17
1.4.2 Work hardening…………………………………………………………………18
1.5 Basic characters of superplastic materials……………………………………………...19
1.6 Superplastic behavior in magnesium matrix composites………………………………21
1.7 Mechanics of creep deformation……………………………………………………….24
1.7.1 Dislocation glide………………………………………………………………..26
1.7.2 Dislocation creep………………………………………………………………..26
1.7.3 Diffusion creep………………………………………………………………….29
1.7.4 Grain boundary sliding………………………………………………………….30
1.8 Fracture mechanics……………………………………………………………………..30
1.8.1 Theoretical KIC plane strain……………………………………………………..30
1.8.2 Geometric configuration of KIC specimens………………………………..31
1.8.3 Precracking……………………………………………………………………...32
1.8.4 Propagation of cracks…………………………………………………………...32
1.8.5 The estimation of KIC...........................................................................................33
1.9 Spray forming…………………………………………………………………………..34
1.10 Motives of this research………………………………………………………………36
Chapter 2 Experimental Methods…………………………………………………………….38
2.1 Materials………………………………………………………………………………..38
2.2 Fabrication processes of magnesium based composite………………………………...38
2.2.1 Ingot metallurgy (IM)…………………………………………………………...38
2.2.2 Powder metallurgy (PM)………………………………………………………..39
2.2.3 Spray forming (SF)……………………………………………………………...41
2.3 Extrusion process (Ext)………………………………………………………………...42
2.4 Room temperature mechanical properties………………………….…………………..43
2.4.1 Hardness test……………………………………………………………………43
2.4.2 Fracture toughness………………………………………………………………43
2.5 Evaluation of high temperature tensile behavior……………………………………….44
2.5.1 Tensile testing…………………………………………………………………...44
2.5.2 Strain rate sensitivity (m-value)………………………………………………...44
2.6 Microstructure observations……………………………………………………………45
Chapter 3 Experimental Results……………………………………………………………...47
3.1 Specimen preparations…………………………………………………………………47
3.2 Microstructures…………………………………………………………………………49
3.2.1 Grain size…………………………………………..……………………………49
3.2.2 SEM observations………………………………………………………………51
3.2.3 TEM observation………………………………………………………………..53
3.2.4 X-ray diffraction patterns……………………………………………………….55
3.3 Microhardness………………………………………………………………………….56
3.4 Tensile strength…………………………………………………………………………57
3.4.1 Room temperature tensile properties……………………………………………57
3.4.2 Tensile tests at elevated temperatures…………………………………………..58
3.4.3 Fractography after tensile testing……………………………………………….63
3.5 Toughness………………………………………………………………………………65
Chapter 4 Discussions………………………………………………………………………..70
4.1 Processing and microstructure………………………………………………………….70
4.2 Strengthening…………………………………………………………………………...72
4.3 Creep properties………………………………………………………………………..77
4.4 Toughness behavior…………………………………………………………………….80
Chapter 5 Conclusions……………………………………………………………………….82
References……………………………………………………………………………………85
Tables…………………………………………………………………………………………92
Figures………………………………………………………………………………………117


List of Tables

Table 1.1 Comparison among magnesium, steel, cast iron, aluminum alloys and engineering plastics……………………………………………………………..92
Table 1.2 The standard four-part ASTM designation system of alloy and temper for the magnesium alloys………………………………………………………………93
Table 1.3 The effects of separate solute additions on the mechanical properties…………94
Table 1.4 The experimental data on high strain rate superplastic aluminum and magnesium matrix composites………………………………………………………………95
Table 1.5 Summary of some superplastic performances containing both high strain rate and low temperature superplasticity in magnesium composites…………………….96
Table 1.6 Reduction of process steps for spray formed preforms in comparison with powder metallurgy………………………………………………………………97
Table 2.1 Chemical composition of the AZ61 (in wt%)…………………………………..98
Table 3.1 Grain sizes of each composite…………………………………………………..99
Table 3.2 Mechanical properties at room temperature…………………………………...100
Table 3.3 Yield stresses, UTS and tensile elongations of the IM 0.2 vol% composite extruded at 400oC……………………………………………………………...101
Table 3.4 Yield stresses, UTS and tensile elongations of the IM 1 vol% composite extruded at 300oC………………………………………………………………………..102
Table 3.5 Yield stresses, UTS and tensile elongations of the PM 0.2 vol% composite extruded at 400oC……………………………………………………………...103
Table 3.6 Yield stresses, UTS and tensile elongations of the PM 1 vol% composite extruded at 400oC……………………………………………………………...104
Table 3.7 Yield stresses, UTS and tensile elongations of the PM 1 vol% composite extruded at 300oC……………………………………………………………...105
Table 3.8 Yield stresses, UTS and tensile elongations of the SF 0.2 vol% composite extruded at 400oC……………………………………………………………...106
Table 3.9 Yield stresses, UTS and tensile elongations of the SF 0.2 vol% composite extruded at 300oC……………………………………………………………...107
Table 3.10 Yield stresses, UTS and tensile elongations of the AZ61 alloy extruded at 300oC…………………………………………………………………………108
Table 3.11 Comparison of the ultimate tensile strength at elevated temperatures and a strain rate of 1x10-3 s-1………………………………………………………………..109
Table 3.12 Fracture toughness of specimens made by different processes………………..110
Table 3.13 The toughness obtained via triple point bending tests on specimens extruded at 300oC…………………………………………………………………………..111
Table 4.1 Summary of the size and volume fraction of various particle phases present in the processed composites……………………………………………………...112
Table 4.2 Summary of theoretical predictions for each second phase particles (SiO2, MgO, Mg2Si, Al4Mn) and the overall CRSS
參考文獻 References
1. M. Sumita, Y. TsuKumo, K. Miyasaka, and K. Ishikawa, J. Mater. Sci., 18 (1983) p. 1758.
2. S. N. Maiti and K. K. Sharma, J. Mater. Sci., 27 (1992) p. 4605.
3. Z. Bartczak, A. S. Argogon, R. E. Cohen, and M. Weinberg, Polymer, 40, 1999, p. 2347.
4. S. Bazhenov, J. X. Li, A. Hiltner, and E. Baer, J. Appl. Polym. Sci., 52 (1994) p. 243.
5. I. L. DubniKova, V. G. Oshmyan, and A. Ya. Gorenberg, J. Mater. Sci., 32 (1997) p. 1613.
6. J. Jancar, J. Polym. Eng. Sci., 30 (1990) p. 707.
7. J. Jancar and A. T. Dibenedetto, J. Mater. Sci., 29 (1994) p. 4651.
8. E. Fekete, S. Z. Molnar, G. M. Kim, G. H. Michler, and B. Pukanszky, J. Macromol. Sci. Phys., 13 (1999) p. 885.
9. G. M. Kim and D. H. Lee, J. Appl. Polym. Sci., 82 (2001) p. 785.
10. S. Iijima, Nature, 354 (1991) p. 56.
11. 陳錦俢,工業材料,186期 (2002) p. 148
12. A. A. Lou, J. Metals, 54 (2002) p. 42.
13. Y. Kojima, Mater. Sci. Forum, 350-351 (2000), p. 3.
14. G. V. Raynor, in The Physical Metallurgy of Magnesium and Its Alloys (Pergamon Press, London, 1957).
15. T. Lyman, H. E. Boyer, P. M. Unterweiser, J. E. Foster, J. P. Hontas and H. Lawton, in Metals Handbook (ASM International, Metals Park, Ohio, 1975).
16. R. W. Cahn, P. Haasen and E. J. Kramer, Mater. Sci. Tech., 8 (1996) p. 131.
17. 楊智超,工業材料,198期 (2003), p.81.
18. Q. D. Wang, W. D. Chen, X. Q. Zeng, Y. Z. Lu, W. J. Ding, Y. P. Zhu, X. P. Xu, M. Mabuchi, J. Mater. Sci., 36 (2001), p. 3035.
19. Y. Li and H. Jones, Mater. Sci. Tech., 12 (1996), p. 651.
20. S. Beer, G. Frommeyer, and E. Schmid, Magnesium Alloys and Their Applications, DGM Informations-Gesellschaft, Oberursel (1992), p. 317.
21. G. Y. Yuan, Z. L. Liu, Q. D. Wang, and W. J. Ding, Mater. Lett., 56 (2002), p. 53.
22. M. Avedesian and H. Baker, in ASM Speciality Handbook, Magnesium and Magnesium Alloys (ASM International, Materials Park, Ohio, 1999).
23. S. Kamado and Y. Kojima, Materia Japan, 38 (1999), p. 285
24. 楊智超,工業材料,152期 (1999) p. 72.
25. 林景扶,工業材料,152期 (1999) p. 81.
26. S. Spigarelli, Scripta Mater., 42 (2000) p. 397.
27. H. Watanabe, T. Mukai, M, Kohzu, S. Tanabe, and K. Higashi, Mater. Trans. JIM, 40 (1999) p. 809.
28. H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, Scripta Mater., 41 (1999), p. 209.
29. H. Somekawa, M. Kohzu, S. Tanabe, and K. Higashi, Mater. Sci. Forum, 350-351 (2001), p. 177.
30. T. Narutani and J. Takamura, Acta Mater., 39 (1991), p. 2037.
31. G. Nussbaum, P. Sainfort and G. Regazzoni, Scripta Mater., 29 (1989) p. 1079.
32. D. Lahaie, J. D. Embury, M. M. Chadwick and G. T. Gray, Scripta Mater., 27 (1992) p. 139.
33. T. M. Yue, H. U. Ha and N. J. Musson, J. Mater. Sci., 30 (1995) p. 2277.
34. C.F. Chang, S.K. Das, in Processing of Structural Metals by Rapid Solidification (ASM International, Metals Park, OH, 1987).
35. S.K. Das, L.A. Davis, Mater. Sci. Eng., 98 (1988) p. 1.
36. Govind, K. S. Nair, M. C. Mittal, K. Lal, R. K. Mahanti, and C. S. Sivaramakrishnan, Mater. Sci. and Eng., A304–306 (2001) p. 520.
37. 林鉉凱,”析出型AZ91鎂合金低溫超塑性之研究”,國立中山大學材料科學與工程研究所碩士論文 (2001)。
38. R. M. German, in Powder Metallurgy Science 2nd edition (Metal Powder Industries Federation, New Jersey, 1994).
39. M. Mabuchi, T. Asahina, H. Iwasaki and K. Higashi, Mater. Sci. Tech., 13 (1997) p. 825.
40. G. E. Dieter, in Mechanical Metallurgy (McGraw-Hill, Inc., London, 1988).
41. S. Kalpakjian, in Manufacturing Processes for Engineering Materials 3rd ed. (Addison-Wesley Longman, Inc., Menlo Park, 1997).
42. W. J. Kim, S. W. Chung, C. S. Chung, and D. Kum, Acta Mater., 49 (2001) p. 3337
43. G. Itoh, Y. Iseno, and Y. Motohashi, J. Japan Inst. of Metals, 66 (2002) p. 16.
44. H. K. Lin and J. C. Huang, Key Engingeering Materials, 233-236A (2003) p. 875.
45. V. M. Segal, V. I. Reznikov, A. E. Drobyshevkij, and V. I. Kopylov, Metally, 1 (1981) p. 115.
46. V. M. Segal, V. I. Reznikov, V. I. Kopylov, D. A. Pavlik, and V. F. Malyshev, in Processes of Plastic Transformation of Metals (Navukai Teknika, Minsk, 1984).
47. R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, Mater. Sci. Eng., A168 (1993) p. 141.
48. R. Z. Valiev, N. A. Krasilnikov, and N. K. Tsenev, Mater. Sci. Eng., A137 (1991) p. 35.
49. N. H. Ahmadeev, R. Z. Valiev, V. I. Kopylov, and R. R. Mulyukov, Metally 5 (1992) p. 96.
50. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater., 45 (1997) p. 4733.
51. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon. Scripta Mater., 35 (1996) p. 143.
52. M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, Scripta Mater., 36 (1997) p. 681.
53. A. Yamashita, Z. Horita, and T. G. Langdon, Mater. Sci. Eng., A300 (2001) p. 142.
54. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi, Scripta Mater., 45 (2001) p. 89.
55. W. J. Kim, C. W. An, Y. S. Kim, and S. I. Hong, Scripta Mater., 47 (2002) p. 39.
56. Y. Chino, M. Mabuchi, K. Shimojima, Y. Yamada, C. Wen, K. Miwa, M. Nakamura, T. Asahina, K. Higashi, and T. Aizawa, Mater. Trans., 42 (2001) p. 414.
57. T. Mukai, H. Watanabe, K. Moriwaki, K. Ishikawa, Y. Okanda, and K. Higashi, Mater. Sci. Forum, 357 (2001) p. 459.
58. H. Watanabe, T. Mukai, K. Ishikawa, and K. Higashi, Mater. Trans., 43 (2002), p. 78.
59. M. Mabuchi, K. Kubota, and K. Higashi, Mater. Tans. JIM, 36 (1995) p. 1249.
60. H. K. Lin and J. C. Huang, Mater. Trans. JIM, 43 (2002) p. 2424.
61. 李敬仁,”鎂合金超塑變形之裂孔成核成長研究”,國立中山大學碩士論文 (2003)。
62. T. G. Nieh, J. Wadsworth and O. D. Sherby, in Superplasticity in Metals and Ceramics (Cambridge Univ. Press, Cambridge, UK, 1997).
63. M. Mabuchi and K. Higashi, Mater. Trans. JIM, 35, 1994, p. 399.
64. T. Imai, S. Kojima, G. L’Esperance, B. Hong and D. Jiang, Scripta Mater., 35 (1996) p. 1199.
65. B. Q. Ham and K. C. Chan, Scripta Mater., 36 (1997) p. 593.
66. T. G. Nieh, R. Kaibyshev, F. Musin and D. R. Lesuer, in Superplasticity and Superplastic Forming, (ed. A. K. Ghosh and T. R. Bieler, TMS, Warrendale, 1998) p. 137.
67. A. J. Ardell, Metall. Trans., 16A (1985) p. 2131.
68. B. Y. Lou, T. D. Wang, J. C. Huang, and T. G. Langdon, Mater. Sci. Forum, 357-359 (2001) p. 545.
69. J. H. Haar and J. Duszczyk, Mater. Sci. Eng., A135 (1992) p. 65.
70. S. E. Bondt, L. Ftoten, and A. Deruyttrer, Mater. Sci. Eng., A135 (1992) p. 29.
71. P. L. Ratnaparkhi, and J. M. Howe, Scripta Metall., 27 (1992) p. 133.
72. A. R. E. Singer, Mater. Sci. Eng., A135 (1992) p. 13.
73. E. Breval, Z. Deng, S. Chiou, C. G. Pantamo, J. Mater. Sci., 27 (1992) p. 1464.
74. R. M. K. Young, Mater. Sci. Eng., A135 (1992) p. 19.
75. K. Purazrang, P. Abachi, K. U. Kainer, Composites, 25 (1994) p. 296.
76. S. W. Lim, T. Imai, Y. Nishida and T. Choh, Scripta. Metall., 32 (1995) p. 1713.
77. T. Imai, S. W. Lim, D. Jiang and Y. Nishida, Scripta Mater., 36 (1997) p. 611.
78. V. Laurent, P. Jarry, G. Regazzoni, D. Apelian, J. Mater. Sci., 27 (1992) p. 4447.
79. T. G. Nieh and J. Wadsworth, Scripta Metall., 32 (1995) p. 1133.
80. P. Metenier, G. Gonzalez-Doncel, O. A. Ruano, J. Wolfenstine, and O. D. Sherby, Mater. Sci. Eng., A125 (1990) p. 195.
81. H. Watanabe, T. Mukai, T. G. Nieh and K. Higashi, Mater. Sci. Forum, 304-306 (1999) p. 297.
82. B. Y. Lou, Ph.D. Thesis (1999) National Sun Yat-Sen University, Taiwan.
83. R. Y. Huang, S. C. Chen, and J. C. Huang, Mater. Trans., 32A (2001) p. 2575.
84. T. D. Wang and J. C. Huang, Mater. Trans. JIM, 42 (2001) p. 1781.
85. B. Y. Lou, Y. F. Huang, J. R. Huang, J. C. Huang, H. L. Lee, and H. C. Fu, ROC invention patent 127987 (2001).
86. E. Orowan, Symposium on Internal Stresses in Metals and Alloys. Discussion. Monogr. And Rep. Series #5, (Inst. Metals, London, 1948) p. 451.
87. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials 4th edition (John Wiley and Sons, Inc., New York, 1996).
88. T. J. Koppenaal, and D. Kuhlmann-Wilsdorf, App. Phys. Lett., 4 (1964) p. 59.
89. M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi, Scripta Mater., 36 (1997) p. 699.
90. J. W. Edington, Metall. Trans., 13A (1982) p. 703.
91. K. Higashi, M. Mabuchi, T. G. Langdon, ISIJ International, 36 (1996) p. 1423.
92. R. S. Mishra, T. R. Bieler, and A. K. Mukherjee, Acta Mater., 45 (1997) p.561.
93. R. S. Mishra, and A. K. Mukherjee, Scripta metall., 25 (1991) p. 271.
94. Y. Li, and T. G. Langdon, Acta Mater., 46 (1998), p. 3937.
95. K. Matsuki, Y. Uetani, M. Yamada, and Y. Murakami, Metal Sci., 10 (1976) p. 235.
96. R. Kaibyshev, and V. Kazyhanov, in Supplemental volume to Superplasticity and Superplastic Forming, (ed. A. K.Ghosh and T. R. Bieler. The Minerals, Metals and Materials Society, Warrendale, 1998) p. 30.
97. H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi, Acta Mater., 49 (2001) p. 2027.
98. M. Mabuchi, and K. Higashi, Phil. Mag. Lett., 70 (1994) p. 1.
99. M. Mabuchi and K. Higashi, Acta Mater., 47 (1999) p. 1915.
100. H. Watanabe, T. Mukai, and K. Higashi, Scripta Mater., 40 (1999) p. 477.
101. H. J. Frost and M. F. Ashby, in Deformation-mechanism Maps (Pergamon Press, London, 1982).
102. H. Watanabe, H. Hosokawa, T. Mukai, and T. Aizawa, Materia Japan 39 (2000) p. 347.
103. T. G. Nieh, A. J. Schwartz, J. Wadsworth, Mater. Sci. Eng., A208 (1996), p. 30.
104. H. Watanabe, T. Hukai, T. G. Nieh, and K. Higashi, Scripta Mater., 42 (2000) p. 249.
105. J. Weertman, J. Mech. Phys. Sol., 4 (1956) p. 230.
106. ASTM E-399, “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”, 2 (1976), p. 686.
107. 材料測試與分析,機械工程手冊5 (2002), p. 12.
108. S. Spangel, E. M. Schulz, A. Schulz, H. Vetters, P. Mayr, Mater. Sci. Eng., A326 (2002) p. 26.
109. P. Mathur, S. Annavarapu, D. Apelian, and A. Lawley, Mater. Sci. Eng., A142 (1991) p. 261.
110. A. R. E. Siger, Met. Mater., 4 (1970) p. 246.
111. A. R,. E. Singer, J. Inst. Met., 100 (1972) p. 185.
112. B. Williams. Met. Powder Rep., 35 (1980) p. 464.
113. H. C. Fiedler, T. F. Sawyer, R. W. Kopp and A. G. Leatham, J. Metals, 39 (1987) p. 28.
114. P. S. Grant, Prog. In Mater. Sci., 39 (1995) p.497.
115. 曹紀元,工業材料,186 (2002),p.158。
116. R. W. Evans, A. G. Leatham, and R. G. Brooks, Powder Metall., 28 (1985) p. 13.
117. S. Annavarapu, D. Apelian, and A. Lawley, Metall. Trans., 19A (1988) p. 3077.
118. E. J. Lavarnia and N. J. Grant, Mater. Sci. Eng., 98 (1988) p. 381.
119. F. W. Baker, R. L. Kozarek, G. J. Hildeman, Proc. 2nd Int. Conf. Spray Forming, Osprey Metals, ( Red Jacker Works, Neaath, 1993) p. 395.
120. L. Wei, J. C. Huang, Mater. Sci. Tech., 9 (1993) p. 841.
121. M. Mabuchi, and K. Higashi, Advanced Composites ’93: International Conference on Advanced Composite Materials, (ed. T. Chandra and A. K. Dhingra, TMS, Warrendale, 1993) p. 1141.
122. J. W. Edington, K. N. Melton, and C. P. Cultler, Prog. In Mater. Sci., 21 (1976) p. 61.
123. J. Hashim, L. Looney, and M. S. J. Hashmi, Mater. Pro. Tech., 119 (2001), p. 329.
124. J. Lan, Y. Yang, and X. Li, Mater. Sci. Eng., A386 (2004), p. 284.
125. C. J. Lee, J. C. Huang, and P. J. Hsieh, Scripta Mater., 54 (2006), p. 1415
126. P.M. Kelly, Scripta. Metall. 6 (1972), p. 647.
127. L.M. Brown and R.K. Ham, Strengthening Methods in Crystals, (Halsted Press Division, John Wiley & Sons, New York, 1970) p. 9.
128. R. Labusch, Phys. Stat. Sol., 41 (1970) 659-666.
129. G. Neite, M. Sieve, M. Mrotzek, E. Nebach, Proc. 4th Ris
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code