Responsive image
博碩士論文 etd-0717107-170413 詳細資訊
Title page for etd-0717107-170413
論文名稱
Title
陽極緩衝層PEDOT:PSS 之特性對於有機高分子太陽能電池的影響
Effects of anode modification on the improved performance of organic solar cells based on poly (3-hexylthiophene): Fullerene
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-04
繳交日期
Date of Submission
2007-07-17
關鍵字
Keywords
導電度、有機高分子太陽能電池
Ethylene glycol, Glycerol, PEDOT:PSS
統計
Statistics
本論文已被瀏覽 5663 次,被下載 0
The thesis/dissertation has been browsed 5663 times, has been downloaded 0 times.
中文摘要
本篇論文研究於PEDOT:PSS 中加入不同濃度的Glycerol 或Ethylene glycol 作為添加物,並對於改質後PEDOT:PSS 的光性、物性與電性進行探討。我們觀察到吸收光譜和HOMO 值並未隨著添加物加入前後與加入濃度不同而有所改變;而在PEDOT:PSS 中加入適當濃度的添加物,會使導電度有提升的現象;最後表面成膜粗糙度會隨著添加物的濃度增加而增加,使得旋轉塗佈方式容易有成膜不均的現象。
最後將改質後的PEDOT:PSS 作為陽極緩衝層,應用於有機高分子太陽能電池元件上,其元件結構為ITO/PEDOT:PSS(加入不同濃度的Glycerol 或Ethylene glycol)/P3HT:PCBM/Al 所組成,以AM1.5G 100mW/cm2 的模擬太陽光源下量測元件量測參數。當PEDOT:PSS 加入適當濃度的添加物應用於有機高分子太陽能電池,功率轉換效率可從2%提升至3%,大幅地提升50%。探討其改善原因為加入添加物使得導電度增加,造成短路電流增加,最後提升整體有機高分子太陽能電池元件的功率轉換效率。
Abstract
We investigated the different percentage of glycerol or ethylene glycol doped into PEDOT:PSS as anode buffer layer in OSC. The electrical, optical and physical properties of PEDOT:PSS were measured before and after adding glycerol or ethylene glycol. Their optical transparency was almost the same by UV-Vis spectrophotometer. Their HOMO value, measured by PESA, was around 5.1eV. Modified PEDOT:PSS with proper concentration addition increased its conductivity. Finally, surface roughness of PEDOT:PSS layer increased with higher concentration of addition resulted in bad film-forming from spin coating process.
We fabricated polymer solar cells with modified PEDOT:PSS as anode buffer layer. The devise was consisted of ITO/PEDOT:PSS (different doping concentration of glycerol or ethylene glycol ) /P3HT:PCBM /Al and measured device parameter of solar cell with sunlight simulation of AM1.5G 100mW/cm2 . We found that improvement of power conversion efficiency of polymer solar cell from 2% to 3% and short-circuit current was improved for 32%, with modified PEDOT:PSS as anode buffer layer.
We suggested that the improved short-circuit current was originated from increased conductivity of PEDOT:PSS that was modified by glycerol or ethylene glycol. Finally power conversion efficiency of polymer solar cell was increased with modified.
目次 Table of Contents
誌 謝.................................................... I
中文摘要................................................ II
Abstract ............................................... III
目 錄.................................................... V
圖目錄................................................... X
表目錄................................................ XIII
第一章 緒論.............................................. 1
1-1 有機太陽能電池簡介............................... 1
1-2 有機太陽能電池結構演進........................... 5
1-2-1 單層結構................................... 5
1-2-2 雙層異質界面結構........................... 6
1-2-3 混合層異質界面結構......................... 7
1-2-4 接合層異質界面結構......................... 7
1-3 陽極緩衝層PEDOT:PSS 簡介........................ 12
1-4 研究動機........................................ 14
第二章 基本理論......................................... 16
2-1 光電轉換原理.................................... 16
2-2 太陽光模擬...................................... 21
2-3 太陽電池等效電路................................ 27
2-4 光電特性參數.................................... 30
2-4-1 短路電流(Isc) ............................. 30
2-4-2 開路電壓(Voc) ............................. 31
2-4-3 填充因子(F.F.) ............................ 32
2-4-4 功率轉換效率(ηP) .......................... 33
第三章 實驗細節......................................... 35
3-1 實驗流程........................................ 35
3-2 實驗藥品........................................ 36
3-2-1 ITO ....................................... 36
3-2-2 PEDOT:PSS ................................. 36
3-2-3 P3HT ...................................... 36
3-2-4 PCBM ...................................... 36
3-2-5 Glycerol .................................. 36
3-2-6 Ethylene glycol ........................... 37
3-2-7 Xylene .................................... 37
3-3 實驗步驟........................................ 40
3-3-1 配藥流程.................................. 40
1. PEDOT:PSS 材料: ............................. 40
2. P3HT/PCBM 材料: ............................. 40
3-3-2 探討改質後PEDOT:PSS 之光性、物性和電性.... 41
3-3-3 有機高分子太陽能電池元件製程.............. 42
3-4 量測儀器與方法.................................. 45
3-4-1 紫外光/可見光光譜儀(UV-Vis) ............... 45
3-4-2 光電子光譜分析儀(PESA) .................... 46
3-4-3 電阻量測法................................ 47
3-4-4 原子力顯微鏡(AFM) ......................... 48
3-4-5 太陽光譜模擬量測系統(Solar simulator system)
................................................ 50
3-4-6 表面輪廓儀(Surface profiler) .............. 51
3-5 製程儀器........................................ 58
3-5-1 超音波清洗機(Ultrasonic cleaning) ......... 58
3-5-2 磁式旋轉加熱盤(Hot plate) ................. 58
3-5-3 旋轉塗佈機(Spin coator) ................... 58
3-5-4 紫外光曝光機(UV exposure) ................. 58
3-5-5 電漿清洗機(O2-plasma) ..................... 58
3-5-6 手套箱(Glove box) ......................... 59
3-5-7 蒸鍍機(Evaporator) ........................ 59
第四章 結果與討論....................................... 60
4-1 利用UV-Vis 量測吸收光譜結果..................... 60
4-1-1 不同濃度G-PEDOT 的量測結果................ 61
4-1-2 不同濃度E-PEDOT 的量測結果................ 61
4-2 利用PESA 量測HOMO 值............................ 63
4-2-1 不同濃度G-PEDOT 的結果.................... 63
4-2-2 不同濃度E-PEDOT 的結果.................... 64
4-3 利用電阻量測法量測導電度........................ 65
4-3-1 不同濃度G-PEDOT 的結果.................... 66
4-3-2 不同濃度E-PEDOT 的結果.................... 66
4-4-3 比較G-PEDOT 與E-PEDOT 的結果差異.......... 67
4-4 利用AFM 量測表面成膜粗糙度...................... 70
4-4-1 不同濃度G-PEDOT 的結果.................... 70
4-4-2 不同濃度E-PEDOT 的結果.................... 71
4-4-3 比較G-PEDOT 與E-PEDOT 的結果差異.......... 71
4-5 製作有機高分子太陽能電池量測元件量測參數........ 80
4-5-1 不同濃度G-PEDOT 的結果.................... 81
4-5-2 不同濃度E-PEDOT 的結果.................... 83
4-5-3 比較G-PEDOT 與E-PEDOT 的結果差異.......... 85
4-6 實驗結果討論.................................... 93
第五章 總結與未來工作................................... 96
5-1 總結............................................ 96
5-2 未來工作........................................ 98
參考文獻................................................99
參考文獻 References
[1] 工業材料雜誌 91 年2 月182 期 太陽光電技術之介紹
[2] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Morlarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4 (2005)
864-869
[3] W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of interpenetrating network morphology”, Adv. Funct. Mater. 15
(2005) 1617
[4] H. Kallmann, M. Pope, “Photovoltaic effect in organic crystals”, J. Chem. Phys. 30 (1958) 585-586
[5] M. Hiramoto, H. Fukusumi, and M. Yokoyama, Appl. Phys. Lett. Vol.61, No.21, 1992
[6] A. Elschner, F. Bruder, H.-W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, “PEDT:PSS for efficient hole-injection in hybrid OLED”, Synthetic Metals 111-112 (2000)
139-143
[7] X. Gong, D. Moses, A.J. Heeger, S. Liu and A.K.-Y. Jen,“High-performance PLED fabricated with a polymer hole injection layer”, Appl. Phys. Lett., Vol.83, No.1, 2003
[8] Y. Cao, G. Yu, C. Zhang, R. Menon, A.J. Heeger, “PLED with PEDT:PSS as the transparent anode”, Synthetic Metals 87 (1997) 171-174
[9] S. Alem, R. de Bettignies, J.-M. Nunzi, M. Cariou, “Efficent polymer-based interpenetrated network photovoltaic cells”, Appl. Phys. Lett., Vol.84, No.12, 2004
[10] M.Y. Song, K.J. Kim, D.Y. Kim, “Enhancement of photovoltaic characteristics using a PEDOT interlayer in TiO2/MEH-PPV heterojunction devices”, Solar Energy Materials & Solar cells 85 (2005) 31-39
[11] F. Jonas, J.T. Morrison, “PEDT: conductive coatings technical applications and properties”, Synthetic Metals 85 (1997) 1397-1398, 100
[12] J. Huang, P.F. Miller, J.C. de Mello, A.J. de Mello, D.D.C. Bradley,“Influence of thermal treatment on the conductivity and morphology of PEDOT:PSS films”, Synthetic Metals 139 (2003) 569-572
[13] J.C. Scott, J.H. Kaufman, P.J. Brock, R. DiPietro, J. Salem and J.A. Goitia, “Degradation and failure of MEH-PPV light-emitting diodes”, J. Appl. Phys. 79 (1996) 2745
[14] M.P. de Jong, L.J. van Ijzendoorn, and M.J.A. de Voigt, “Stability of the interface between ITO and PEDOT:PSS in PLED”, Appl. Phys. Lett., Vol.77, No.14, 2000
[15] W.H. Kim, G.P. Kushto, H. Kim, Z.H. Kafafi, Effect of annealing on the electrical properties and morphology of a conducting polymer used as an anode in OLED”, J. Polym. Sci. Part B: Polym. Phys. 41 (2003) 2522-2528
[16] W.H. Kim, A.J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, and Z.H. Kafafi, “Molecular OLED using highly conducting polymers as anodes”, Appl. Phys. Lett., Vol.80, No.20, 2002
[17] A.J. Makinen, I.G. Hill, R. Shashidhar, N. Nikolov, and Z.H. Kafafi, Appl. Phys. Lett., Vol.79, No.5, 2001
[18] M.K. Fung, S.L. Lai, S.W. Tong, M.Y. Chan, C.S. Lee, S.T. Lee, W.W. Wu, M. Inbasekaran, and J.J. O’Brien, “Anode modification of polyfluorene-based PLEDs”, Appl. Phys. Lett., Vol.81, No.8, 2002
[19] S.L. Lai, M.Y. Chan, M.K. Fung, C.S. Lee, S.T. Lee, “Concentration effect of glycerol on the conductivity of PEDOT film and the device performance”, Materials Science and Engineering B 104 (2003) 26-30
[20] T. Nyberg, “An alternative method to build organic photodiodes”, Synthetic Metals 140 (2004) 281-286
[21] F.L. Zhang, A.Gadisa, O. Inganas, M. Svensson, and M.R. Andersson, “Influence of buffer layers on the performance of polymer solar cells”, Appl. Phys. Lett., Vol.84, No.19, 2004
[22] J.Ouyang, C.-W. Chu, F.-C. Chen, Q. Xu, and Y. Yang,“High-conductivity PEDOT:PSS film and its application in polymer optoelectronic devise”, Adv. Funct. Mater. 15 (2005) 203-208
[23] C.-J. Ko, Y.-K. Lin, F.-C. Chen, and C.-W Chu, “Modified buffer layers for polymer photovoltaic devices”, Appl. Phys. Lett. 90, 063509 (2007) 101
[24] D. Bagchi, R. Menon, “Conformational modification of conducting polymer chains by solvents: Small-angle X-ray scattering study”, Chemical Physics Letters 425 (2006) 114-117
[25] Oriel Corp.
P.W. Atkins, Kurzlehrbuch Physikalische Chemie, 3. Aufl. 2001, WILEY-VCH
[26] M.A. Green, Solar Cells Operating Principles, Technology, and System Application, P4~6 and P85~96, 1982
[27] B. Burnett, The Basic Physics and Design of Ⅲ-Ⅴ Multijunction Solar Cells, 2002
[28] M.P. Thekackra, The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft, NASA Technical Report No.R-351, 1970
[29] 莊嘉琛,太陽能工程-太陽電池篇,全華,1997
[30] 陳金鑫、黃孝文著,有機電激發光材料與元件,五南,2005
[31] 電阻量測法參考網頁
http://www.hcstarck.de/index.php?page_id=1178
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.164.151
論文開放下載的時間是 校外不公開

Your IP address is 18.118.164.151
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code