Responsive image
博碩士論文 etd-0717107-180738 詳細資訊
Title page for etd-0717107-180738
論文名稱
Title
摻Sb之CuInSe2薄膜太陽能電池之研製
Fabrication of CuInSe2:SbThin Film Solar Cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-28
繳交日期
Date of Submission
2007-07-17
關鍵字
Keywords
熱蒸鍍、二硒化銅銦、薄膜太陽能電池、硒化鋅
CuInSe2, thin-film solar cell, ZnSe, buffer layer
統計
Statistics
本論文已被瀏覽 5659 次,被下載 0
The thesis/dissertation has been browsed 5659 times, has been downloaded 0 times.
中文摘要
本論文是以成長Al/ZnO:Al(AZO)/ ZnSe /CuInSe2:Sb /Mo/sodalime
glass(SLG)為結構之太陽能電池為目標。在CuInSe2 中特別摻入
Sb 可增加表面形貌的平坦化,有助於元件的成長。使用ZnSe 取代
CdS 作為緩衝層,可減低對於環境的污染。
調降氬氣壓力成長雙層結構之鉬薄膜擁有低應力與低阻抗的特
性。目前,鉬薄膜之張應力維持在100 MPa 以下,片電阻可達0.205(Ω
/□)為最佳值。在濺鍍(AZO)薄膜方面,改變濺鍍距離為5 公分,有
效地降低電阻率至1.73×10-3 (Ω-cm),並且在可見光波段內皆有80
﹪以上之透光率。引進黃光微影技術,濺鍍Al 金屬電極,以改善
Al/ AZO 之間的歐姆接觸電阻。
成長以Al/AZO/ ZnSe /CuInSe2 /Mo/SLG 為結構之元件,在模模
擬光源(AM1.5,100mW/cm2)照射下,其轉換效率為4.4 ﹪(Voc =0.41
V,I sc = 3.9 mA ,FF = 69 ﹪)。摻入Sb 之CuInSe2 為結構之元件,
轉換效率可提昇至6.0﹪(Voc =0.43 V,I sc = 5.15 mA ,FF = 68
﹪) 。本研究顯示出摻入Sb 之CuInSe2 薄膜為結構之元件,可以有
效增加元件的短路電流。
Abstract
We attempted to fabricate the CuInSe2:Sb thin-film solar cells with a Al/ZnO:Al(AZO)/ ZnSe /CuInSe2:Sb /Mo/soda-lime glass(SLG) structure. The growth of CuInSe2 film in the presence of Sb can effectively improve the surface morphology and benefit the growth of the device. A ZnSe buffer layer has been applied as an attractive alternative to a CdS buffer layer, thus eliminating environment from pollution.
By varying the Ar pressure during the deposition, the Mo bilayer has been fabricated with both low resistivity and good adhesion. Currently the tensile stress was maintained below 100MPa, and the lowest sheet resistance achieved 0.205(Ω/□). The fabrication condition with a 5-cm sputtering distance could provide the lowest resistivity of 1.73×10-3 (Ω-cm) in the AZO thin-film that shows a transmittance of above 80﹪in the visible range. Applying the technology of optical lithography to deposit the Al metal front grid, the Al/ AZO ohmic contact resistance was improved.
The energy conversion efficiency of the CIS thin-film solar cell (Al/ AZO/ ZnSe /CuInSe2 /Mo/ SLG) was 4.4﹪(Voc =0.41 V,I sc = 3.9 mA ,FF = 69 ﹪) by applying the irradiation with a solar simulator under one-sun (AM1.5, 100mW/cm2) conditions. However, the efficiency of CIS:Sb solar cell (Al/ AZO/ ZnSe /CuInSe2 :Sb /Mo/ SLG) was improved to to 6.0﹪(Voc =0.43 V,I sc = 5.15 mA ,FF = 68 ﹪). This result indicates that the CIS film growth with Sb can increase the short-circuit current.
目次 Table of Contents
第一章 簡介 1
1.1 前言 1
1.2 太陽能電池之歷史背景與研究發展概況 2
1.3 CuInSe2複晶薄膜性質 5
1.4 元件設計分析與探討 8
1.4.1 元件結構設計 8
1.4.2 各層薄膜之特性 9
1.5研究目的 14
第二章 實驗原理、步驟與分析儀器 15
2.1 熱蒸鍍之原理與系統 15
2.2 磁控濺鍍之原理與系統 18
2-3 實驗步驟 20
2-3-1 鈉玻璃基板 20
2-3-2 鉬背電極成長 20
2-3-3 P-type CuInSe2:Sb主吸收層薄膜成長 21
2-4-4 ZnSe緩衝層成長 23
2-4-5 AZO透光層成長 24
2-4-6 Al金屬電極成長 25
2-4-7 元件製作流程圖 27
2.4 薄膜特性分析方法與儀器 28
2.4.1 熱探針量測(Hot probe) 28
2.4.2 四點探針(Four-point probe) 29
2.4.3 霍爾量測(Hall measurement) 30
2.4.4 X光繞射儀(X-ray diffraction) 30
2.4.5 掃描式電子顯微鏡(SEM) 31
2.4.6 吸收光譜儀(Spectrophotometer) 31
2.4.7 反射光譜儀(Spectral reflectance measurement) 32
2.4.8 電流-電壓特性曲線量測(I-V measurement) 32
第三章 實驗結果與討論 33
3.1 MO金屬電極之鍍製 33
3.1.1腔體氬氣壓力對薄膜應力之影響 33
3.1.2腔體氬氣壓力對薄膜片電阻之影響 35
3.1.3 電漿濺鍍鉬金屬之雙層結構(Bi-layer structure) 37
3.2 CuInSe2:Sb主吸收層之鍍製 39
3.2.1 XRD 結構分析 39
3.2.2 吸收光譜儀分析 40
3.2.3 SEM表面形貌分析 41
3.2.4 導電性量測 41
3.3 ZnSe緩衝層之鍍製 43
3.3.1 成長時間對ZnSe 薄膜之影響 43
3.3.2 基板溫度對ZnSe 薄膜之影響 45
3.4 AZO透光層之鍍製 47
3.4.1濺鍍距離對AZO 薄膜之影響 47
3.4.2腔體氬氣壓力對AZO薄膜之影響 51
3.4.3電性量測之比較 54
3.4.4改變濺鍍距離與氬氣壓力之實驗參數比較 54
3.5 元件之製作與轉換效率量測 56
3.5.1 元件轉換效率之基本參數 56
3.5.2 電流-電壓特性曲線量測 57
第四章 結論 62
參考文獻 63
參考文獻 References
1. M. D. Archer, R. Hill, Clean Electricity from Photovoltaics, Imperial College Press (2001)
2. R. Corkish, A power that’s clean and bright, Nature. Vol. 416, p.680-681(2002)
3. D. Talbot, Nanocharging Solar, Technology Review. March/April, p.48-50 (2007)
4. S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd edition John-Wiley & Sons, Ch4, p.89 (2001)
5. J. Nelson, The Physics of Solar Cells, Imperial College Press. Ch5 (2003)
6. H. J. Möller, Semiconductors for solar cells. Artech House, Ch2, p.21-23 (1993)
7. T. Markvart, L. Castañer, Solar Cells: Materials, Manufacture and Operation, Elsevier, lla-1, p.6-27 (2005)
8. H. J. Hovel, Semiconductors and Semimetals. Vol. 11, R. K. Willardson and A. C. Beer, eds., New York: Academic Press, p.195 (1975)
9. D. M. Chapin, et al. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 25, 676 (1954)
10. A. Goetzberger, et al. Photovoltaic materials, history, status and outlook . Solar Energy Materials & Solar Cells, R40, p.1-11 (2003)
11. D. Carlson, C. Wronski, Amorphous silicon solar cell. Appl. Phys. Lett, 28, p.671 (1976)
12. D. L. Staebler, C. R. Wronski, Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett, 31, p.292 (1977)
13. S. M. Sze, Semiconductor Devices: Physics and Technology. 2nd edition, John-Wiley & Sons, ch2, p32 (2001)
14. A. Goetzberger, et al. Solar cells: past, present, future . Solar Energy Materials & Solar Cells, 74, 1-11 (2002)
15. K. Ramanathan, et al. Properties of 19.2% Efficiency ZnO/CdS/
CuInGaSe2 Thin-film Solar Cells. Prog. Photovolt: Res. Appl. 11, 225–230 (2003)
16. A. Miguel, et al. Diode Characteristics in State-of-the-Art ZnO/CdS/
Cu(In1-xGax)Se2 Solar Cells. Prog. Photovolt: Res. Appl. 13, 209-216 (2005)
17. A. Miguel, et al. Progress Toward 20% Efficiency in Cu(In,Ga)Se2
Polycrystalline Thin-film Solar Cells. Prog. Photovolt: Res. Appl. 7, 311-316 (1999)
18. S. U. Harin, et al. Polycrystalline thin film photovoltaics: Research, Development, and Technologies. IEEE. p. 472-477 (2002)
19. N. G. Dhere, et al. Development of CIGS2 thin film solar cells, Materials Sciences and Engineering B, 116, p.303-309 (2005)
20. N. G. Dhere, Present status and future prospects of CIGSS thin film solar cells, Solar Energy Materials & Solar Cells, 90, p.2181-2190 (2006)
21. J. R. Durrant, et al. Solar cells-A solid compromise. Nature Materials. vol 2. NEWS & VIEWS (2003)
22. N. S. Sariciftci, et al. Science, 258, 1474 (1992)
23. M. S. Green, et al. Solar cell efficiency tables (version 20), Science, 258, 1474 (1992)
24. 李俊賢,〝CuInSe2:Sb薄膜太陽能電池之研製〞,國立中山大學材料科學研究所碩士論文(2004)
25. M. L. Fearheiley, The phase relations in the Cu, In, Se system and the growth of CuInSe2 single crystals, Sol. Cells. 16, 91 ( 1986).
26. A. Rockett, R. W. Birkmire, CuInSe2 for photovoltaic applications, J. Appl. Phys. 70 (7), 1 October (1991).
27. S. M. Wasim, Transport properties of CuInSe2, Sol. Cells. 16, 289 (1986)
28. H. J. Möller, Semiconductors for solar cells. Artech House. ch2, p.15 (1993)
29. Y. Ohtake, et al. Polycrystalline Cu(InGa)Se2 Thin-Film Solar Cells with ZnSe Buffer Layers, Jpn. J. Appl. Phys. 34, p.5949-5955 (1995)
30. Y. Ohtake, et al. Characterization of ZnInxSey Thin Films as a Buffer Layer for High Efficiency Cu(InGa)Se2 Thin-Film Solar Cells, Jpn. J. Appl. Phys. 34, p. 3220-3225 (1998)
31. A. Rockett, et al. Na in selenized Cu(In,Ga)Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances, Thin Solid Films. 372, p. 212-217 (2000)
32. U. Rau, H.W. Schock, Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges, Appl. Phys. A. 69, p.131–147 (1999)
33. M. Ruckh, et al. Influence of substrates on the electrical properties of Cu(In,Ga)Se 2 thin films, Sol. Cells. 41/42, p335-343 (1996)
34. D. Braunger, et al. Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films, Thin Solid Films. 361-362, p.161-166 (2000)
35. R. Takei, et al. Depth profiles of spatially-resolved Raman spectra of a CuInSe2-based thin-film solar cell, J. Appl. Phys. 79, 2793, (1996)
36. K. L. Chopra, et al. Thin-Film Solar Cells: An Overview, Prog. Photovolt: Res. Appl. 11, p.225–230 (2003)
37. K. Orgassa, et al. Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells, Thin Solid Films, 431 –432, p.387–391 (2003)
38. T. Wada, et al. Chemical and structural characterization of Cu(In,Ga)Se 2/Mo interface in Cu(In,Ga)Se 2 solar cells. Jpn. J. Appl. Phys. 35, 1253 (1996)
39. H. John, et al. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films. 260, p.26-31 (1995)
40. 李世偉,Ⅰ-Ⅲ-Ⅵ串接式薄膜太陽能電池之研製,國立中山大學材料科學研究所博士研究計畫書 (2005)
41. 張宗文,Sb 摻入對CuInSe2薄膜成長與特性之影響,國立中山大學材料科學研究所碩士論文(1994)
42. 徐有欽,CuInSe2:Sb複晶薄膜太陽能電池之研究,國立中山大學材料科學研究所碩士論文(2003)
43. B. H. Tseng, et al. Influences of Sb on the Growth and Properties of CuInSe2 Thin Films . Jpn. J. Appl. Phys. 34, p.1109-1112 (1995)
44. B. H. Tseng, et al. Surfactant modified growth of CuInSe2 Thin Films. Applied Surface Science. 92, p.227-231 (1996)
45. D. Hariskos, et al. Buffer layers in Cu(In,Ga)Se2 solar cells and modules. Thin Solid Films.480-481, 99-109 (2005)
46. K. Ramanathan, et al. Conference record of the 26th IEEE PVSC, pp. 319 (1997)
47. Eisele, W. et al. IEEE, pp. 692-695 (2000)
48. Gordillo, G. et al. IEEE, pp. 614-617 (2001)
49. H. W. Schock, et al. CIGS-based Solar Cells for the Next Millennium, Prog. Photovolt. Res. Appl. 8, 151-160 (2000)
50. M. A. Green, Photovoltaics: technology overview, Energy Policy, 28, 989-998 (2000)
51. K. Ellmer, et al. D. c. and r. f. (reactive) magnetron sputtering of ZnO:Al films from metallic and ceramic targets : a comparative study. Surface and Coatings Technology. 93, p.21-26 (1997)
52. Y. Jinsu, et al. High transmittance and low resistive ZnO:Al films for
thin film solar cells. Thin Solid Films. 480-481, p.213-217 (2005)
53. W. J. Jeong, et al. Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films. 506-507, p.180-183 (2006)
54. D. K. Schroder, Semiconductor Material and Device Characterization, 3rd edition John-Wiley & Sons, Ch3, p.127 (2006)
55. W. N. Shafarman and J. E. Phillips, Direct current-voltage measurement of the Mo/ CuInSe2 contact on operating solar cells, IEEE, 25th PVSC Washington, D.C. p.917-919 (1996)
56. G. Gordillo, et al. Structural and electrical properties of DC sputtered molybdenum films, Solar Energy Materials and Solar Cells, 51, p.327-337 (1998)
57. L. Assmann, et al. Study of the Mo thin films and Mo/CIGS interface properties, Applied Surface Science, 246, p.159-166 (2005)
58. K. Ip, et al. Contacts to ZnO, Journal of crystal growth, 287, p.149-156 (2006)
59. M. A. Herman, H. Sitter, Molecular Beam Epitaxy, 2nd edition Springer, ch2, p.33-80 (1996)
60. D. Smith, Thin-Film Deposition Principles & Practice, McGraw-Hill, Ch2~Ch3, p.9-62 (1999)
61. D. Smith, Thin-Film Deposition Principles & Practice, McGraw-Hill, Ch8, 431-434 (1999)
62.Z. Zhu, MBE growth mechanisms of ZnSe:Flux ratio and substrate temperature, Journal of crystal growth. 95, p.529-532 (1989)
63. Z. Zhu, MBE growth mechanisms of ZnSe:Growth rate and surface coverage, Journal of crystal growth. 96, p.513-518 (1989)
64. B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, 3rd edition Prentice Hall, Ch5, p.174-183 (2001)
65.許樹恩、吳泰伯著,X光繞射原理與材料結構分析,中國材料科學學會,第十六章第429~430頁(2004)
66. J. A. Thornton, et al. Stress-related effects in thin films. Thin Solid Films. 171, p.5-31 (1989)
67. T. J. Vin, et al. Stress, strain, and microstructure of sputter-deposited Mo thin films. J. Appl. Phys. 70, p.4301-4308 (1991)
68. J. I. Pankove, Optical processes in semiconductors, New York, p.75 (1971)
69. Y. Ohtake, et al. Polycrystalline Cu(InGa)Se2 Thin-Film Solar Cells with ZnSe Buffer Layers. Jpn. J. Appl. Phys. 34, p.5949-5955 (1995)
70. 謝佳和,硒化鋅透光層及浮子成長技術對CuInSe2薄膜太陽能電池特性之影響,國立中山大學材料科學研究所碩士論文(2002)
71. Gordillo, G. et al. Study of optical, structural and morphological properties on Cd-free buffer materials. IEEE. p.614-617 (2000)
72. Y. Ohtake, et al. Characterization of ZnInxSey Thin Films as a Buffer Layer for High Efficiency Cu(InGa)Se2 Thin-Film Solar Cells. Jpn. J. Appl. Phys. 34, p.3220-3225 (1998)
73. S. Dengyuan, et al. Optimisation of ZnO:Al films by change of sputter gas pressure for solar cell application. Applied Surface Science. 195, 291–296 (2002)
74. J. F. Chang, et al. Studying of transparent conductive ZnO : Al thin films by RF reactive magnetron sputtering. Journal of Crystal Growth. 211, 93-97 (2000)
75. S. M. Chang, et al. The low temperature process design for Al doped ZnO film synthesis on polymer. Surface & Coatings Technology (2006)
76. K. Ellmer, et al. ZnO/ZnO:Al window and contact layer for thin film solar cells: high rate deposition by simultaneous RF and DC magnetron sputtering. IEEE. p.881-884 (1996)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.193.172
論文開放下載的時間是 校外不公開

Your IP address is 18.189.193.172
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code