Responsive image
博碩士論文 etd-0717108-152056 詳細資訊
Title page for etd-0717108-152056
論文名稱
Title
交錯型迴路共振腔濾波器及量子點雷射之研製
The Design and Fabrication of Cross-Loop Cavity Filter and Quantum Dot Lasers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-24
繳交日期
Date of Submission
2008-07-17
關鍵字
Keywords
量子點雷射、交錯型迴路共振腔
quantum dot lasers, cross-loop cavity
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
本論文的研究目的為研製交錯型迴路共振腔(cross-loop resonator)。我們藉著使用2×2十字交錯的多模干涉耦合器,搭配彎曲波導,來製作半導體光濾波器。利用多模干涉耦合器,只要適當地調整長度,就可達到特定的分光比 (K=0、0.15、0.5、0.85)。同時藉由Mathcad及BPM模擬驗證,此一設計能有效縮減元件體積達到34%以上。
在研製量子點半導體雷射方面,材料我們使用1.3μm (InGaAs) 量子點雷射結構之磊晶片。我們利用直線波導和劈裂面來產生Fabry-Perot雷射。包括寬面積雷射(broad area)製程、脊狀波導(ridge waveguide)製程以及量子點雷射的靜態特性量測 (IV、LI)。
元件製程方面,先利用光微影技術定義元件圖案,再利用乾蝕刻技術蝕刻出脊狀波導。最後利用HBr:HCl:H2O2:H2O=5:4:1:70之蝕刻液,來修飾波導的側壁,使其表面光滑以降低元件散射損失(scattering loss)。
在雷射量測方面,由於半導體雷射其光功率太小,並沒有雷射光的訊號產生。未來可藉由增加量子點磊晶層數、提升量子點密度、改散元件製程的技術及雷射結構設計,相信能進一步產生雷射訊號。在交錯形迴路共振腔濾波器部分,經量測結果驗證,溼蝕刻後直線波導的損耗可降至約為27.9dB/cm,在Drop port及Throughput port可得FSR=300GHz之光譜傳輸圖,為模擬值的6倍,可能是由於十字交錯的MMI中,光在其中傳輸時,產生cross couple所導致,而Drop port訊號的對比度達到10.22dB。
Abstract
The purpose of this thesis is to design and fabricate cross-loop cavity filter. We fabricated optical filter by bended waveguide and 2x2 90-degree MMI crossing model. By this design, we get the power splitter with coupling coefficient is 0, 0.15, 0.5, 0.85. By MatFhcad and BPM simulation, we showed that the device volume was decrease to 34%.
In the quantum dot lasers, we fabricated the Fabry-Perot laser by optical waveguide and cleavage surface. In the material, a 1.3μm quantum dots InGaAs epitaxial wafer is used to fabricate the lasers. Broad area lasers and ridge waveguide lasers are fabricated and their static properties (IV, LI) are analyzed experimentally.
In fabrication process, first, we defined the device pattern by using photo-lithography technique. Second, we etched ridge waveguide by using dry etching method. Finally, we used the etching solution HBr:HCl:H2O2:H2O=5:4:1:70 to smooth the sidewall and reduce the scattering loss. We showed that the waveguide loss was decrease to 27.9dB/cm.
In the QD lasers characteristic, we can not observe laser characteristics, partly because of the low optical power. Through the optimization of QD growth conditions, we can increase the QD sheet density and increase the number of QD layers. We can also optimize the device processing techniques and laser structure design in order to reduce the series resistance and to increase the optical confinement factor. By using the methods mentioned above, we believe the laser signal can be further increase.
In the cross-loop cavity filter characteristic, we get the FSR=300GHz (simulation value FSR=50GHz) in throughput port and drop port. We attribute this appearance induced by cross couple for 2x2 90-degree MMI. The contracts for the drop port of 10.22dB have been achieved.
目次 Table of Contents
第一章 簡介............................................................................1
1-1 前言..............................................................................1
1-2 交錯型迴路共振器之特點及其應用......................... 2
1-3 量子點雷射簡介..........................................................3
1-4 論文架構......................................................................5
第二章 多模干涉偶合器之原理與模擬................................6
2-1 多模干涉偶合器(MMI)之原理....................................6
2-2 MMI之理論計算........................................................10
2-3 K=0.85 2x2MMI之設計與模擬結果........................10
2-4 2x2 90度十字交錯型多模干涉耦合器模型 (K=0.85)......12
第三章 交錯行共振腔之原理與模擬.................................13
3-1 交錯行共振腔簡介...................................................13
3-2交錯型迴路共振腔濾波器之分析方法....................15
3-2-1 方向性耦合器........................................................15
3-2-2 2x2MMI耦合器......................................................16
3-2-3 彎曲波導................................................................17
3-2-4 交錯行共振腔濾波器之傳輸方程式....................18
第四章 多重堆疊量子點雷射之原理.................................20
4-1 雷射原理...................................................................20
4-1-1 激發放射及居量反轉............................................20
4-1-2 光侷限因素............................................................21
4-1-3 臨界電流密度........................................................22
4-1-4 微分量子效率........................................................23
4-1-5 溫度效應................................................................24
4-2 雷射材料的選擇.......................................................24
第五章 光罩與元件設計.....................................................26
5-1 S型波導之簡介.........................................................26
5-2 光罩及元件設計.......................................................28
5-2-1 交錯形迴路共振腔濾波器....................................28
5-2-2 脊狀波導................................................................29
第六章 元件製程.................................................................31
6-1 磊晶片資料...............................................................31
6-2交錯型迴路共振腔濾波器........................................35
6-2-1製程示意圖.............................................................35
6-2-2製程步驟.................................................................38
6-3脊狀雷射....................................................................46
6-3-2 製程步驟................................................................48
6-3-1製程示意圖.............................................................48
6-4量測結果....................................................................55
第七章 結論.........................................................................65
參考文獻..............................................................................67
附錄A 量子點磊晶片介紹...................................................70
附錄B 量子點磊晶片PL光譜圖..........................................72
參考文獻 References
[1] T. F. Karauss, and P. J. R. Laybourn ”Impact of Output Coupler Configuration on Characteristics of Semiconductor Ring Lasers”, Journal of Lightwave Technology, Vol. 13, Issue 7, pp. 1500-1507, 1995.

[2] G. P. Agrawal, and N. K. Dutta, “Semiconductor Lasers”, Van Nostrand Reinhold, 1993

[3] L. A. Coldren, and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits”, Wiley, 1995

[4] P. S. Zory, and Jr., “Quantum Well Lasers”, Academic Press, 1993

[5] D. Bimberg, M. Grundmann, N. N. Ledentsov, “Quantum Dot Heterostructures”, Wiley, 1999

[6] Y. Arakawa, and H. Sakaki, “Multidimensional quantum well laser and temperature-dependence of its threshold current,” Appl. Phys. Lett., vol. 40, pp.939-941, 1982.

[7]Kirstaedter.N., N.N.Ledentsov, M.Grundmann, D.Bimberg, V.M.Ustinov, S.S.Ruvimov, M.V.Maximov, P.S.Kop’ev, Zh.I.Alferov, U.Richter, P.Werner, U.Gosele,and J.Heydenreich , Electron. Lett., vol.30, pp.1416, 1994

[8] M. Asada, Y. Miyamota, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron., vol. QE-22, pp.1915-1921, 1986.

[9] O.G. Schmide, N.Kirstaedter, N.N. Ledentsov, M.H. Mao, D. Bimberg, V.M. Ustinov, A.E. Egorov, A.E. Zhukov, M.V. Masimov, P.S. Kop’ev, and Zh.I. Alferov, “Prevention of gain saturation by multi-layer quantum dot lasers ” Electron. Lett., vol.32, pp.1302-1304, 1996.

[10] D. G. Rabus, M. Troppenz, ”MMI-Coupled Ring Resonator in GaInAsP-InP” IEEE Photonics Technology Letters, Vol. 13, No. 8, pp. 812-814, 2001.

[11] M. Bachmann, P. A. Besse, and H. Melchior, ”Overlapping-image multimode interference coupler with a reduced number of self-images for uniform and nonuniform power splitting” Applied Optics, Vol. 34, No. 30, pp. 6898-6910, 1995.

[12] S.O. Kasap, “Optoelectronic and Photonics Principles and Practices,” Prentice Hall,2001.

[13] D. Bimberg, M. Grundmann, and N. N. Ledentsov, “Quantum dot heterostructure,” John Wiley & Sons, 1999.

[14] Meint K. Smit, Erik C. M. Pennings, Hans Blok, ”A Normalized Approach to the Design of Low-Loss Optical Waveguide Bends” Journal of Lightwave Technology, Vol. 11, No. 11, pp. 1737-1742, 1993.

[15] L. H. Splekman, Y. S. Oei, E. G. Metaal, F. H. Groen, P. Demeester, M. K. Smit, ’’Ultrasmall waveguide bends the corner mirrors of the future” IEE Optoelectron, Vol. 142, No. 1, pp. 61-65, 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.191.22
論文開放下載的時間是 校外不公開

Your IP address is 3.145.191.22
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code