Responsive image
博碩士論文 etd-0717110-004157 詳細資訊
Title page for etd-0717110-004157
論文名稱
Title
選擇性液體填充光子晶體光纖之光學特性
Optical Properties of Selectively Liquid-Filled Photonic Crystal Fibers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-23
繳交日期
Date of Submission
2010-07-17
關鍵字
Keywords
photonic crystal fiber、selectively liquid-filled
選擇性液體填充, 光子晶體光纖
統計
Statistics
本論文已被瀏覽 5668 次,被下載 0
The thesis/dissertation has been browsed 5668 times, has been downloaded 0 times.
中文摘要
光子晶體光纖是由空氣孔洞在光纖纖殼部份做週期性的排列所組成,當它被製作完成之後,就很難再利用外在因素去調變其光學特性。利用在光子晶體光纖的空氣洞中填充液體,可以製作可調式光纖元件,但是液體層會增加光纖的傳播損耗。在本論文中,我們提出了一個簡單的選擇性封孔技術,並且結合真空吸引的步驟,成功地製作了內層液體填充的光子晶體光纖。藉由液體層外的空氣孔洞,傳播損耗可以有效地被減小,並且保有溫度調變的特性。我們同時也製作內層液晶填充的光子晶體光纖,除了保持損耗降低的特性之外,電場跟溫度調變的能力也還是存在。
另外,我們也提出了在光子晶體光纖中以非對稱的方式填充液體,製作可調式的雙折射性液體填充光子晶體光纖。對該光纖我們分別作了遠場以及極化相依損耗的量測。因為其不對稱結構,量測到的模態場形是橢圓形狀。而相較於傳統的極化維持光纖,我們提出的雙折射性液體填充光子晶體光纖在波長1547.8nm時,可達到 2.89×10-3的高雙折射性,並且極化相依損耗也明顯大於傳統極化維持光纖。此外,我們將此雙折射性液體填充光子晶體光纖結合光學干涉迴路,應用在溫度的感測,可以成功得到-2.12 nm/°C的高靈敏度,這個值是大於由傳統雙折射光纖組成的干涉感測器。
Abstract
Photonic crystal fibers (PCFs) are fabricated in silica with air holes running along the entire fiber in the fiber cladding. The geometric parameters of the PCFs are fixed and it is hard to modulate their optical properties. By infiltrating index-tunable liquids into the air holes of the PCFs, we can obtain liquid-filled PCFs which can function as tunable optical devices. But the losses become large due to the lossy liquid-hole layers. In this thesis, we use a simple selectively blocking technique and the vacuum filling method to fabricate internally liquid-filled PCFs. From the measured results, the propagation losses of the internally liquid-filled PCFs can be efficiently reduced, and the thermal tunability is still maintained. Besides, we also fabricate internally liquid-crystal-filled PCFs. Not only the thermal tunability but also the electrical tunability can be retained of the loss-reduced internally LC-filled PCFs. The electrical tunability can be induced by applying an external electric field. As the applied voltage reaches 200 V, we can obtain the splitting effect of the transmission band.
By using the selectively blocking technique, we also fabricate birefringent liquid-filled PCFs by asymmetrically infiltrating the liquid into the unblocked air holes. An elliptical far field can be observed for our sample. In addition, the measured polarization dependent loss (PDL) is larger than 2 dB. Compared with traditional PMFs, our fabricated sample has larger PDL values and birefringence. The measured birefringence is as high as 2.89×10-3 at 1547.8 nm. Besides, a temperature sensor consisting of a Sagnac loop interferometer (SLI) and our fabricated birefringent liquid-filled PCF is demonstrated. The linear sensitivity is -2.12 nm/°C which is larger than that of other PMF-based SLI sensors.
目次 Table of Contents
1 Introduction 1
1.1 Photonic Crystals ................................................................................... 1
1.2 Photonic Crystal Fibers.......................................................................... 2
1.3 Liquid-Filled Photonic Crystal Fibers.................................................... 3
1.4 Chapter Outline ...................................................................................... 5
2 Fabrication of Selectively Liquid-Filled Photonic
Crystal Fibers 13
2.1 Overview.............................................................................................. 13
2.2 Internally Liquid-Filled PCFs .............................................................. 13
2.2.1 Selectively Blocking Technique.................................................. 14
2.2.2 Vacuum Filling Method............................................................... 16
2.3 Birefringent Liquid-Filled PCFs .......................................................... 17
3 Measurement of Internally Liquid-filled Photonic
Crystal Fibers 28
3.1 Measurement Setup.............................................................................. 28
3.2 Thermal Tunability of Internally Liquid-Filled PCFs.......................... 29
3.3 Thermal and Electrical Tunability of Internally LC-Filled PCFs ........ 31
4 Measurement of Birefringent Liquid-Filled Photonic Crystal
Fibers 43
4.1 Overview.............................................................................................. 43
4.2 Sagnac Fiber Loop Interferometer ....................................................... 44
4.3 Birefringent Liquid-Filled PCFs .......................................................... 45
4.4 Temperature Sensing............................................................................ 48
5 Conclusion 62
Bibliography 64
參考文獻 References
[1] Adibi, A., Y. Xu, R. K. Lee, M. Loncar, A. Yariv, and A. Scherer, “Role of distributed Bragg reflection in photonic-crystal optical waveguides,” Phys. Rev. B, vol. 64, pp. 0411021–0411024, 2001.
[2] Alkeskjold, T. T., and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett., vol. 32, pp. 1707–1709, 2007.
[3] Bétourné, A., V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra
air-clad structure for low-loss operation around 1.5 μm,” Opt. Express, vol. 15, pp. 316–324, 2007.
[4] Birks, T. A., J. C. Knight, and P. St. J. Russell, “Endless single-mode photonic crystal fiber,” Opt. Lett., vol. 22, pp. 961–963, 1997.
[5] Chandrasekhar, S., Liquid crystals. New York: Cambridge Univ. Press, 1995.
[6] Chauvin, N., P. Nedel, C. Seassal, B. B. Bakir, X. Letartre, M. Gendry, A. Fiore, and P. Viktorovitch,
“Control of the spontaneous emission from a single quantum dash using a slow-light mode in a two-dimensional photonic crystal on a Bragg reflector,” Phys. Rev. B, vol. 80, pp. 04531510–453155, 2009.
[7] Chen, C. C., H. D. Chien, and P. G. Luan, “Photonic crystal beam
splitters,” Appl. Opt., vol. 43, pp. 6188–6190, 2004.
[8] Chu, P. L., and R. A. Sammut, “Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber,” J. of Lightwave Technol., vol. 2, pp. 650–662, 1984.
[9] Dong, X., and H. Y. Tam, “Temperature-insensitive strain sensor with polarization-maintaing photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett., vol. 90, pp. 1511131–1511133, 2007.
[10] Du, F., Y. Q. Lu, and S. H. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett., vol. 85, pp. 2181–2183, 2004.
[11] Du, J., Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett., vol. 33, pp. 2215–2217, 2008.
[12] Ferrando, A., E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett., vol. 25, pp.
790–792, 2000.
[13] Frazão, O., J. M. Baptista, and J. L. Santos,
“Recent advances in high-birefringence fiber loop mirror sensors,” Sensors, vol. 7, pp. 2970–2983, 2007.
[14] Frazão, O., J. M. Baptista, J. L. Santos, and P. Roy, “Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric
hole regions in a Sagnac interferometer,” Appl. Opt., vol. 47, pp. 2520–2523, 2008.
[15] Fu, H. Y., H. Y. Tam, L. Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt., vol. 47,
pp. 2835–2839, 2008.
[16] Gêrômo, F., J. Auguste, and J. Blondy, “Design of
dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett., vol. 29, pp. 2725–2727, 2004.
[17] Gêrômo, F., P. Dupriez, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express, vol. 16, pp. 2381–2386, 2008.
[18] Gundu, K. M., M. Kolesik, J. V. Moloney, and K. S. Lee, “Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers,” Opt. Express, vol. 14, pp. 6870–6878, 2006.
[19] Han, Y. G., Y. Chung, and S. B. Lee,
“Discrimination of strain and temperature based on a polarization-maintaining photonic crystal fiber
incorporating an erbium-doped fiber,” Opt. Comm., vol. 282, pp. 2161–2164, 2009.
[20] Happ, T. D., M. Kamp, and A. Forchel, “Coupling of point-defect microcavities in two-dimensional photonic-crystal slabs,” J. Opt. Soc. Am. B, vol. 20, pp. 373–378, 2003.
[21] Hu, D. J. J., P. Shum, C. Lu, X. Sun, G. Ren, X. Yu, and G. Wang, “Design and analysis of thermal tunable liquid crystal filled hybrid photonic crystal fiber coupler,” Opt. Comm., vol. 282, pp. 2343–2347, 2009.
[22] Hung, Y., Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett., vol.
85, pp. 5182–5184, 2004.
[23] Jin, C., Z. Sun, B. Cheng, Z. Li, and D. Zhang,
“Microcavities composed of point defects and waveguides in photonic crystals,” Opt. Comm., vol.
188, pp. 255–260, 2001.
[24] John, S., “Strong location of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489, 1987.
[25] Ju, J., W. Jin, and M. S. Demokan, “Properties of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 15, pp. 1375–1377, 2003.
[26] Kalra, Y., and R. K. Sinha, “Photonic band gap engineering in 2D photonic cryatals,” J. Phys., vol. 67, pp. 1155–1164, 2006.
[27] Kim, D. H., and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature
sensitivity,” Opt. Express, vol. 12, pp. 4490–4495, 2004.
[28] Knight, J. C., T. A. Birks, P. St. Russel, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett., vol.
21, pp. 1547–1549, 1996.
[29] Knight, J. C., T. A. Birks, R. F. Cregan, P. St. Russell, and J. P. Sandro, “Large mode area photonic crystal fibre,” IEEE Electron Lett., vol. 34, pp. 1347–1348, 1998.
[30] Knight, J. C., J. Arriaga, T. A. Birks, A. Otigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett., vol. 12, pp. 807–809, 2000.
[31] Kuhlmey, B. T., B. J. Eggleton, and D. K. C. Wu, “Fluid-filled solid-core
photonic bandgap fibers,” J. of Lightwave Technol., vol. 27, pp. 1617–1630, 2009.
[32] Lee, S. H., B. H. Kim, and W. T. Han, “Effect of filler metals on the temperature sensitivity of side-hole fiber,” Opt. Express, vol. 17, pp. 9712–9717, 2009.
[33] Li, Z. Y., B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic crystals,” Phys. Rev. Lett., vol. 81, pp. 2074–2577, 1998.
[34] Li, J., S. T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys., vol. 97, pp. 0735011–0735015, 2005.
[35] Ma, X., and P. L. Chu, “Design of temperature-compensated elliptical core birefringent fibres,” Opt. Comm., vol. 130, pp. 357–364, 1996.
[36] Moon, D. S., B. H. Kim, A. Lin, G. Sun, W. T. Han, Y. G. Han, and Y. Chung, “Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber,” Opt. Express, vol. 13,
pp. 8371–8376, 2007.
[37] Mortensen, N. A., M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, “Improved large-mode area endlessly single-mode photonic
crystal fibers,” Opt. Lett., vol. 28, pp. 393–395, 2003.
[38] Noda, J., K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. of Lightwave Technol., vol. 4, pp. 1071–1088, 1986.
[39] Noordegraaf, D., L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings
in liquid crystal photonic bandgap fibers,” Opt. Express, vol. 15, pp. 7901–7912, 2007.
[40] Noordegraaf, D., L. Scolari, J. Lægsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett., vol. 33, pp.
986–988, 2008.
[41] Okamoto, K., H. Miyazawa, J. Noda, and M. Saruwatari, “Noveloptical isolator consisting of a YIG spherical lens and PANDA-fiber polarizers,”
Electron. Lett., vol. 21, pp. 36–38, 1985.
[42] Okamoto, K., and J. Noda, “Spectral band-elimination filter consisting of concatenated dual-core fibers,” Electron. Lett., vol. 22, pp. 211–212, 1986.
[43] Okamoto, K., and T. Hosaka, “Polarization-dependent chromatic dispersion in birefringent optical fibers,” Opt. Lett., vol. 12, pp. 290–292,1987.
[44] Okoshi, T., N. Fukuya, and K. Kikuhi, “New polarization-state control device: Rotatable fiber cranks,” Electron. Lett., vol. 21, pp. 895–896, 1985.
[45] Rosa, E., L. A. Zenteno, A. N. Starodumov, and D. Monzon, “All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop,” Opt. Express, vol. 22, pp. 481–483, 1997.
[46] Scolari, L., S. Gauza, H. Xianyu, L. Zhaio, L. Eskildsen, T. Tanggaard, S. T. Wu, and A. Bjarklev,
“Frequency tunability of solid-core photonic
crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express, vol. 17, pp. 3754–3764, 2009.
[47] Shibata, N., K. Okamoto, K. Suzuki, and Y. Ishida, “Polarization-mode properties of elliptical-core fibers and stress-induced birefringent fibers,” J. Opt. Soc. Amer., vol. 73, pp. 1792–1798, 1983.
[48] Shih, M. H., W. J. Kim, W. Kuang, J. R. Cao, H. Yukawa, S. J. Choi, J. D. O’Brien, P. D. Dapkus, and W. K. Marshall, “Two-dimensional photonic crystal
Mach-Zehnder interferometers,” Appl. Phys. Lett., vol. 84, pp. 460–462, 2004.
[49] Starodumov, A. N., L. A. Zenteno, D. Monzon, and E. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett., vol. 70, pp. 19–21, 1997.
[50] Sun, J., and C. C. Chan, “Effect of liquid crystal alignment on bandgap formation in photonic bandgap fibers,” Opt. Lett., vol. 32, pp. 1989–1991, 2007.
[51] Sun, Y. S., Y. F. Chau, H. H. Yeh, L. F. Shen, T. J. Yang, and D. P. Tsai, “High birefringence photonic crystal fiber with a complex unit cell of asymmetric elliptical air hole cladding,” Appl Opt., vol. 46, pp.
5276–5281, 2007.
[52] Tokushima, M., and H. Yamada, “Light propagation in a photonic-crystal-slab line-defect waveguide,” IEEE J. Quantum Electron., vol. 38, pp. 753–759, 2002.
[53] Wang, D. D., Y. S. Wang, X. Q. Zhang, L. X. Yi, L. E. Deng, C. X. Zhang, and X. Han, “Enlargement of complete two-dimensional band gap by using photonic crystal heterostructure,” Appl. Phys. B, vol. 81, pp. 465–467, 2005.
[54] Witkowska, A., K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, “All-fiber anamorphic core-shape transitions,” Opt. Lett., vol. 31, pp. 2672–2674, 2006.
[55] Wolinski, T. R., A. Czapla, S. Ertman, M. Tefelska, A. J. Domanski, E. Kruszelnicki, and R. Dabrowski,
“Tunable highly birefringent solid-core photonic crystal fibers,” Opt. Quant. Electron, vol. 39, pp. 1021–1032, 2007.
[56] Xiao, L., W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional
fusion splicer,” Opt. Express, vol. 13, pp. 9014–9022, 2005.
[57] Xuan, H., W. Jin, M. Zhang, J. Ju, and Y. Liao, “In-fiber polarimeters based on hollow-core photonic bandgap fibers,” Opt. Express, vol. 17, pp. 13246–13254, 2009.
[58] Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics electronics,” Phys. Rev. Lett., vol. 58, pp. 2059–2062, 1987.
[59] Yamamoto, T., M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga,
“Design of a high-Q air-slot cavity based on a
width-modulated line-defect in a photonic crystal slab,” Opt. Express, vol. 16, pp. 13809–13817, 2008.
[60] Yu, C. P., J. H. Liou, S. S. Huang, and H. C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt.
Express, vol. 16, pp. 4443–4451, 2008.
[61] Yu, C. P., and J. H. Liou, “Selectively liquid-filled photonic crystal fibers for optical devices,” Opt. Express, vol. 11, pp. 8729–8734, 2009.
[62] Zhang, H., B. Liu, Z. Wang, J. Luo, S. Wang, C. Jia, and X. Ma, “Temperature-insensitive displacement sensor based on high-birefringence photonic crystal fiber loop mirror,” Opt. Appl., vol. XL, pp. 209–217, 2010.
[63] Zografopoulos, D. C., E. E. Kriezis, and T. D. Tsiboukis, “Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance,” Opt. Express, vol. 14, pp. 914–925, 2006.
[64] Zografopoulos, D. C., E. E. Kriezis, and T. D. Tsiboukis, “Tunable highly birefringent bandgap-guiding liquid-crystal microstructured fibers,” J. of
Lightwave Technol., vol. 24, pp. 3427–3432, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.9.37
論文開放下載的時間是 校外不公開

Your IP address is 18.117.9.37
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code