Responsive image
博碩士論文 etd-0717110-231305 詳細資訊
Title page for etd-0717110-231305
論文名稱
Title
離子液體液晶製備擬固態電解質應用於染料敏化太陽能電池
Quasi-solid state electrolytes of Ionic liquid crystal apply in Dye-Sensitized Solar Cell.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-29
繳交日期
Date of Submission
2010-07-17
關鍵字
Keywords
離子液體、染料敏化太陽能電池、液晶、擬固態電解質
Quasi-solid state electrolytes, Dye-Sensitized Solar Cell, Ionic liquid crystal
統計
Statistics
本論文已被瀏覽 5728 次,被下載 6547
The thesis/dissertation has been browsed 5728 times, has been downloaded 6547 times.
中文摘要
我們使用了一種新穎的離子液體液晶(C18IMCNBr),藉由將離子液晶配向,做為應用在染料敏化太陽能電池中的電解質,將有配相的離子液晶與沒有配相的離子液晶相互比較,實驗結果顯示有配相的離子液晶其短路電流(Jsc)與光電轉換效率,均高於沒有配相的離子液晶,顯示出配向後的離子液晶其導電度較於優越。
短路電流與光電轉換效率的提高,說明了離子液晶配向後增加了其導電度,而增加的原因為提升了碘離子間的交換機制。
由於配向後所產生的二度空間傳導電子模式(如下圖所示),能夠使得在配相後的離子液晶中的碘負一價及碘負三價離子,能夠做有組織的排列,電解質中polyiodide (Im- ,m= 5, 7, ...)其集中程度也會較高,相較於在三維空間中的電子傳導模式,藉由此種二維電子傳導模式,碘離子(I-,I3-, and Im-)之間有較多的碰撞頻率,因此提升了碘離子間的交換作用,故藉由離子液晶二維空間配向來增加其碘離子間的碰撞頻率,經由本實驗可證實有效提升短路電流Jsc 與光電轉換效率。
Abstract
A novel ionic liquid crystal (ILC) system (C18IMCNBr) with a liquid crystal alignment used as an electrolyte for a dye-sensitized solar cell (DSSC) showed the higher short-circuit current density (Jsc) and the
higher light-to-electricity conversion efficiency than the system using the non- alignment liquid crystalline ionic liquid (C18IMCNBr),due to the higher conductivity of liquid crystal alignment. The larger Jsc and
efficiency value of liquid crystal alignment supported that the higher conductivity of liquid crystal alignment is attributed to the enhancement of the exchange reaction between iodide species.
As a result of formation of the two-dimensional electron conductive pathways organized by the localized I3- and I- at liquid crystal alignment
layers, the concentration of polyiodide species exemplified by Im- (m =5,7, ...) was higher in alignment C18IMCNBr. However, in the two-dimensional electron conductive pathways of C18IMCNBr, more collision frequencies between iodide species (I-,I3-, and Im-) could be achieved than that in the three-dimensional space of C18IMCNBr, which could lead to the promotion of the exchange reaction between iodide species, the contribution of a two-dimensional structure of the conductive
pathway through the increase of collision frequency between iodide species was proposed.
目次 Table of Contents
目錄
誌謝…….……………………………………………………………… IV
中文摘要.………………………………………………………...……..V
英文摘要……………………………………………………………….VII
目錄.……………………………………………………………..…VIII
圖目錄.………………………………………………………….XII
第一章 緒論.………………………………………….…………………1
1.1 前言.……………………………………………………………1
1.2 研究動機……………………………………………………….2
第二章 染料敏化太陽能電池與文獻回顧……………………………..5
2.1 無機太陽能電池……………………………………………….5
2.2 有機太陽能電池……………………………………………….6
2.3 染料敏化太陽能電池結構…………………………………….8
2.3.1染料敏化太陽能電池…………………………….……..8
2.3.2透明導電基板……………………………………………9
2.3.3緻密層(Dense layer)……………………………….10
2.3.4二氧化鈦電極(TiO2光電極)………………..…….…10
2.3.5染料……………………………………….……………12
2.3.6電解液…………………………………….….………...18
2.3.7 對電極(鉑電極)…………………………..…………...18
2.4 染料敏化太陽能電池之工作原理...........................................19
2.4.1 工作原理……………………………………………....19
2.4.2 電子電洞分離…………………………………………21
第三章 實驗器材及藥品………………………………………………23
3.1熱重分析儀TGA………………………………………………23
3.2熱示差掃描卡量計DSC………………………………………24
3.3紫外與可見光光譜儀………………………………………….25
3.4交流阻抗分析儀(AC-Impedance)…..……...………………….26
3.5旋轉塗佈機(Spin Coater)………………………………….29
3.6高溫爐………………………….…………………….………..29
3.7 太陽光譜模擬量測系統…………….……………………….30
3.7.1性能參數………………………………………………32
3.7.1.1短路電流Jsc…………………..…………………...32
3.7.1.2開路電壓Voc……………………………………….32
3.7.1.3填充因子FF………………………………………...33
3.7.1.4電池總效率η……………………………………….33
3.8 實驗藥品…………………………………………………….35
第四章 實驗步驟………………………………………………………38
4.1 DSSC元件製作流程……………………………………..…...38
4.1.1 流程圖…………………………………………………38
4.1.2 ITO基板的清潔流程…………………………..……..39
4.1.3 配製TiO2緻密層溶液…………………………………39

4.2 配製TiO2溶膠凝膠溶液………………………………..…...40
4.2.1配製標準TiO2溶膠凝膠溶液(標準型)……………….40

4.3 以旋轉塗佈機成膜(Spin Coat)…………..……………….…..40
4.3.1 以旋轉塗佈機將緻密層成膜在ITO上……………..40
4.3.2 以旋轉塗佈成膜標準型TiO2多孔隙層(ITO基板)…42

4.4 高溫鍛燒……………………………………………………43
4.4.1 高溫爐鍛燒……………………………………………43
4.5 染料配製與DSSC元件組裝…………………………………44
4.5.1 配製染料與浸泡………………………………………44
4.5.2 DSSC元件組裝………………………………………..45
4.5.3含氰基之咪唑離子液晶的合成製備與置入電解 質………………………………………………………………......……46
4.5.4 DSSC元件封裝………………………………………..49
4.5.5 測量效率………………………………………………51
第五章 實驗結果與討論………………………………………………52
5.1 液晶物性分析……………………………………………...…52
5.1.1 熱重量分析儀(TGA)…………………………………52
5.1.2 熱示差掃描熱卡量計DSC……………………………53
5.1.3單晶繞射分析分析………………………..…..………56
5.1.4 XRD (X-ray 繞射儀)分析…….……………………..58
5.1.5偏光顯微鏡POM分析………………………………64
5.1.6交流阻抗分析儀(AC-Impedanc)………….…………...68
5.2 配向方式對效率的影響…………………………………69
5.2.1 應力配向…………………………………………..…..69
5.2.1.2 TiO2 應力配向對效率的影響……………….………72
5.2.2.2.配向膜配向……………………………..……………74
5.2.2.3配向膜配向對效率的影響……………….…………77
總結..………………………………………………………83

第六章 參考文獻…………………………………………..……85
參考文獻 References
第六章 參考文獻
1. 網站:PVCDROM。http://pvcdrom.pveducation.org/index.html
2. M. Grätzel / Journal of Photochemistry and Photobiology A:
Chemistry 164 (2004) 3–14
3. Martin A. Green1, “Solar Cell Efficiency Tables (Version 31)”, Prog.
Photovolt:Res. Appl. (2008); 16:61-67
4. Tsubomura, Nature 261, 402 (1976)
5. M. Grätzel, Nature 353, 737-740 (1991)
6. G. Sivalingam, Applied Catalysis B: Environmental 45 (2003) 23-38
7. Bisquert J (2002). J. Phys. Chem. B106 325
8. G. J. Meyer, J. Chem. Educ., 74, 652, (1997)
9. Hara, Langmuir 20, 4205-4210 (2004).
10. Hara, Sol. Energy Mater. Sol. Cells 77, 89-103 (2003).
11. Klein, Inorg. Chem. 44, 178-180 (2005).
12. M. Grätzel, Inorg. Chem. 44, 6841-6851 (2005).
13. Wang, J. Am. Chem. Soc. 127, 808-809 (2005).
14. Michael Grätzel, Acc. Chem. Res. (2000), 33, 269-277
15. Jun-Ho Yum, Mohammad K. Nazeeruddin, ChemSusChem (2008),
1 ,699-707
16. Zaban et al. J. Phys. Chem. B, (1998), 102, 452-460
17. Jörg Ferber, Joachim Luther Solar Energy Materials and Solar Cells
54 (1998) 265-275
18. Zhong-Sheng Wang, Coordination Chemistry Reviews 248 (2004) 1381-1389
19. Peng Wang, J. Phys. Che. B, Vol. 107, No. 48, (2003)
20. Kohjiro Hara, News J. Chem, (2003), 27, 783-785
21. Soon Hyung Kang, Journal of Photochemistry and Photobiology
A:Chemistry 200 (2008) 294-300
22. Jih-Jen Wu, Nanotechnology 19 (2008) 105702 (7pp)
23. Seigo Ito, Paul Liska, Chem. Commun., (2005), 4351-4353
24. U. Opara Krašovec, Solar Energy Material & Solar Cells(2008),
do:10.1016/j.solmat. (2008).11.012
25. Seigo Ito, Thin Solid Films 516 (2008) 4613-4619
26. Chengwu Shi, Solar Energy 82 (2008) 385-388
27. Peng Wang, Chem. Mater. (2004), 16, 2694-2696
28. Zilong Tang, Materials Chemistry and Physics 77 (2002) 314-317
29. Qiquan Qiao et al. / Solar Energy Materials & Solar Cells 90 (2006)
1034-1040
30. Shao-Lu Li, Chem. Commun. , 2006, 2792-2794
31. Emilio Palomares, Chem. Commun. , (2002), 1464-1465
32. Peng Wang, Chem. Mater. (2004), 16, 2694-2698
33. Peng Wang, Chem. Commun. ,( 2002), 2972-2973
34. V.P.S. Perera, Solar Energy Materials & Solar Cells 86 (2005)
443-450
35. E. Stathatos and P. Lianos, Chem. Mater. (2003), 15, 1825-1829
36. K. Tennakone, Solar Energy Materials and Solar Cells 55 (1998)
283-289
37. Carlos Pinilla, J. Phys. Chem. B (2005)
38. A. Yasumori, J. Mater. Chem. 8, 2521-2524 (1998)
39. B. E. Yoldas, J. Mater. Sci. 21, 1087-1092 (1986)
40. Judy N. Hart, J Sol-Gel Sci Techn, 40, 45-54 (2006)
41. Anders Hagfeld, Chem. Rev. 95, 49-68 (1995)
42. J.E.Moser, J. Am. Chem. Soc. 127, 12150-12151 (2005)
43. Seung-Min Paek, Journal of Physics and Chemistry of Solids xx 1-4
(2006)
44. M. Grätzel, Nature 353, 737-740 (1991)
45. M.Grätzel, International Photovoltaic Science & Engineering
Conference PL 2-4 (2005)
46. Hagfeldt, M. Acc. Chem. Res. 33, 269-277 (2000)
47. M. Grätzel, Inorg. Chem. 44, 6841-6851 (2005)
48. M. Grätzel Adv. Funct. Mater. 2009, 19, 1–16
49. N. Yamanaka, R. Kawano, W. Kubo, N. Masaki, T.Kitamura,Y.
Wada, M. Watanabe, and S. Yanagida; J.Phys. Chem. B 2007, 111,
4763-4769.
50. Yamanaka, N.; Kawano, R.; Kubo, W.; Kitamura, T.; Wada, Y.;
Watanabe, M.; Yanagida, S. Chem. Commun. 2005, 740.
51. Kusabayashi; Mikawa, H.; Kawai, S.; Uchida, M.; Kiriyama, R.
Bull. Chem. Soc. Jpn. 1964, 37, 811.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code