Responsive image
博碩士論文 etd-0717112-151301 詳細資訊
Title page for etd-0717112-151301
論文名稱
Title
利用展延DWDM多通道基於ROADM在可循環式的AWG實驗架構下進行實驗之研究
Experimental studies of extended DWDM channels configuration based on ROADM with cyclic-AWG
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-27
繳交日期
Date of Submission
2012-07-17
關鍵字
Keywords
光纖光柵、陣列光柵波導、可重組光信號塞取多工器
ROADM, FBG, AWG
統計
Statistics
本論文已被瀏覽 5659 次,被下載 144
The thesis/dissertation has been browsed 5659 times, has been downloaded 144 times.
中文摘要
隨著下世代網路(Next generation networking, NGN)所發展出通用多重通訊協定標籤交換技術(Generalized Multi- Protocol Label Switching, GMPLS)中所需之自動交換光網路系統(Automatically Switched Optical Network, ASON),可重組態光信號塞取多工器(Reconfigurable optical add-drop multiplexer, ROADM)對ASON系統來說是一個不可缺少的設備,且高密度分波多工系統(Dense wavelength-division multiplex, DWDM)的信號在網路傳輸的管理下,其可協助網路管理員動態的管理客戶需求及所要的服務品質(Quality of Service, QoS),並增加現有光纖線路的容量、減少或免除架設額外光纖線路的需要。本論文研究ROADM以循環式陣列波導光柵(Array waveguide grating, AWG)和布雷格光纖光柵(fiber Bragg grating, FBG)為基礎架構,克服可重組態光信號塞取多工器無法處理當輸入之光波長訊號多於陣列波導光柵之波長通道數的問題。各種類型的ROADM已被提出並且被實現出來,其中以加入光循環器以及光纖光柵之方式最被大家所接受,因其擁有低串擾和不隨偏振擾動的特性。
然而在以往展現的架構中,一個波長對應一組光循環器以及光纖光柵,倘若現今有10個波長需要被使用,則需要額外對應的十組光循環器以及光纖光柵;對於此一狀況不僅僅增加了元件的數量,也更增大了系統的插入損耗。因此在此論文中,我們著重在於使用最少的元件來獲得最佳的效果,結果也證實我們仍然可以在波長多工的情況下成功減少光循環器數量而不使我們串擾過量增加。
在此同時我們思考這架構是否是有最好效果,因而嘗試改成不對稱架構再去與之做比較。而最後結果顯示出非對稱效果更好,但是卻不能做光路交叉對接(Optical cross connection, OXC). 是故最後使用上,我們必須在最好效果以及有交換性對稱效果上做一個使用上的取捨。
Abstract
In response to the development of a next-generation networking (NGN), generalized multi-protocol label switching (GMPLS) technology is required for automatically switched optical network (ASON). Reconfigurable optical add-drop multiplexer (ROADM) is an indispensable device for the ASON, and the dense wavelength division multiplexed (DWDM) signals can be transmitted through the network under the management of the network administrator to configure dynamic customer needs and the desired quality of service (QoS). The ROADM can also increase the efficiency of utilizing the existing capacity of the optical fiber lines and can reduce or waive to set up additional optical fiber lines. This thesis studies a ROADM based on the arrayed waveguide grating (AWG) and the fiber Bragg grating (FBG) to overcome the issue that the current ROADM cannot process input signal channels that is greater than the wavelength channels of the AWG. All kinds of ROADM have been proposed and realized through different optical devices. Among these, hybrid optical circulator and FBG based ROADM is more attractive because of its low crosstalk and polarization insensitivity.


However, in the previous study, the structure needs an optical circulator and a fiber Bragg grating per wavelength. If there are 10 wavelengths to be used, you need 10 groups of the optical circulator and the fiber Bragg grating corresponding to each wavelength. This situation not only increases the number of components, but also increases the insertion loss of the system. In this master thesis, we focus on to reduce number of circulators and gratings while obtaining the best results.

At the same time we think about whether this structure is the best, and thus try to change the asymmetrical architecture to compare. The final results show that the asymmetrical structure is better, but it does not realize optical cross-connect (OXC). Therefore for the choice, we must choose the best results or the exchangeability of the symmetrical structure.
目次 Table of Contents
致謝 I
中文摘要 II
Abstract III
Contents V

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  Background of Next-Generation Optical Internet. . . . . . . . .. . 1
1.2  The GMPLS Paradigm . . . . . . . . . . . . . . . . .. . . . . . . . 4
1.3  Motivation of this Thesis. . . . . . . . . . . . . . . .. . . . . . 6
1.4  Structure of this Thesis. . . . . . . . . . . . . . . . . . . . . . 7
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Overview of OADM system. . . . . . . . . . . . . . .. . . . . . . . . . 11
2.1  Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2  Technologies of OADM system. . . . . . . . . . . . . . . . . . . . 11
2.3  Function of the proposed ROADM. . . . . . . . . . . . . . . . . . . 21
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Experimental Study of OADM. . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Experimental Setup - Symmetrical structure. . . . . . . . . . . . 27
3.2.1 Static set up. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Dynamic set up. . . . . . . . . . .. . . . . . . . . . . . . . . . 31
3.3 Experimental Results and Discussions - Symmetrical structure. . . . 32
3.3.1 Homowavelength crosstalk. . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Static Performance. . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Dynamic performance. . . . . . . . . . . . . . . . . . . . . . . . 36
3.4  Experimental Setup – Asymmetrical structure. . . . . . . . . . . . 38
3.4.1 Static set up. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 Dynamic set up. . . . .. . . . . . . . . . . . . . . . . . . . . . 41
3.5  Experimental Results and Discussions – Asymmetrical structure. . . 42
3.5.1 Static Performance. . . .. . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Dynamic performance. . . . . . . . . . . . . . . . . . . . . . . . 44
3.6  Summary. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
參考文獻 References
[1] Kuznetsov, M; Froberg, NM; Henion, SR, et al. “A next-generation optical regional access network,” IEEE COMMUNICATIONS MAGAZINE, Vol. 38, No. 1, pp. 66-72 , JAN. 2000.
[2] Kazovsky, LG; Shaw, WT; Gutierrez, D, et al. “Next-generation optical access networks,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 25, No. 11, pp. 3428-3442, 2007.
[3] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons Inc., 1991.
[4] D. Katz, K. Kompella, and D. Yeung. “Traffic engineering (TE) extensions to OSPF version2,” IETF RFC 3630, SEPT. 2003.
[5] E. Mannie, “Generalized multi-protocol label switching (GMPLS) architecture,” IETF RFC 3945, OCT. 2004.
[6] Sabella, R; Settembre, M; Oriolo, G, et al. “A multilayer solution for path provisioning in new-generation optical/MPLS networks,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 21, No. 5, pp. 1141-1155, MAY 2003.
[7] Elwalid, A; Mitra, D; Saniee, I, et al. “Routing and protection in GMPLS networks: From shortest paths to optimized designs,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 21, No. 11, pp. 2828-2838, NOV 2003.
[8] R. Munoz, R. V. M Rivera, J. Sorribes, and G. J. Giralt, “Experimental GMPLS-Based Provisioning,” JOURNAL OF LIGHTWAVE TECHNOLOGY, Vol. 23, No. 10, pp. 3034-3045, OCT. 2005.
[9]. K. Iwatsuki, Jun-ichi Kani, H. Suzuki, and M. Fujiwara, “Access and metro networks based on WDM technologies,” IEEE J. Lightwave Technol., vol. 22, no 11, pp. 1623-1630, Nov. 2004.
[10]. J.-K.Rhee, I. Tomkos, and Ming-Jun Li “A broadcast-and-select OADM optical network with dedicated optical-channel protection,” IEEE J. Lightwave Technol.,vol. 21, no 1, pp. 25-31, Jan. 2003.
[11]. P. Arijs, R. Meersman, W. Van Parys, E. Iannone, A. Tanzi, M. Pierpaoli, F.Bentivoglio, and P. Demeester, “Architecture and design of optical channel protected ring networks,” IEEE J. Lightwave Technol., vol. 19, no 1, pp. 11-22,Jan. 2001.

[1]. K.O. Hill and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
[2]. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol., vol. 15, no. 8, pp. 1277-1294, Aug. 1997.
[3]. S.D. Dods and R.S. Tucker, “A comparison of the homodyne crosstalk characteristics of optical add-drop multiplexers,” IEEE J. Lightwave Technol., vol. 19, no. 12, pp. 1829-1838, Dec. 2001.
[4]. R.J.S. Pedersen and B.F.Jorgensen, “Impact of coherent crosstalk on usable bandwidth of a grating-MZI based OADM,” IEEE Photonics. Technol. Lett., vol. 10, no. 4, pp. 558-560, April 1998.
[5] Y.K. Chen, C.H. Chang, Y.L. Yang, I.Y. Kuo, T.C. Liang, “Mach–Zehnder fiber-grating-based fixed and recon-figurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. (1999) 245–262.
[6] C. Pu, L.Y. Lin, E.L. Goldstein, R.W. Tkach, Client-configurable eight-channel optical add/drop multiplexer using micromachining technology, IEEE Photon. Technol. Lett. 12 (2000) 1665–1667.
[7] H. Okayama, Y. Ozeki, and T. Kunii, “Dynamic wavelength selective add/drop node comprising tunable gratings,” Electronics Letters, vol. 33, no. 10, pp. 881–882, May 1997.
[8] Jungho Kim and Byoungho Lee, “Bidirectional Wavelength Add-Drop Multiplexer Using Multiport Optical Circulators and Fiber Bragg Gratings,” Photon. Technol. Lettr., vol. 12, no 5, pp. 561-563, May 2000.
[9] Hai Yuan, Wen-De Zhong, , and Weisheng Hu” FBG-Based Bidirectional Optical Cross Connects for Bidirectional WDM Ring Networks “JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2004.
[10] Chen-Mu Tsai and Yu-Lung Lo, “Fiber-Grating Add-Drop Reconfigurable Multiplexer with Multi-channel Using in Bi-directional Optical Network,” Optical Fiber Technology, vol. 13, no. 3, pp. 260-266, July. 2007.
[11]. K.A. McGreer, “Arrayed waveguide gratings for wavelength routing,” IEEE Commun. Mag., vol. 36, no. 12, pp. 62-68, Dec. 1998.
[12]. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon Technol. Letter, vol. 3, pp. 812-815, 1991.
[13]. C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” Photon Technol. Letter, vol. 3, pp. 896-899, 1991.
[14]. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed-waveguide N×N wavelength multiplexer,” IEEE J. Lightwave Technol.,vol. 13, no. 3, pp. 447-455, March 1995.
[15]. H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-Waveguide Multiplexer on N×N Optical Interconnection,” IEEE J.Lightwave Technol., vol. 14, no. 6, pp. 1097-1105, June 1996.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code